Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Some necessary conditions for radial Fourier multipliers


Author: Walter Trebels
Journal: Proc. Amer. Math. Soc. 58 (1976), 97-103
MSC: Primary 42A18
DOI: https://doi.org/10.1090/S0002-9939-1976-0412716-8
MathSciNet review: 0412716
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Necessary conditions in terms of differentiability and growth properties for a radial function $ m(\vert z\vert)$ to be a Fourier multiplier of type $ (p,q)$ are given and compared with sufficient ones.


References [Enhancements On Off] (What's this?)

  • [1] A. Bonami and J.-L. Clerc, Sommes de Cesàro et multiplicateurs des développements en harmoniques sphériques, Trans. Amer. Math. Soc. 183 (1973), 223-263. MR 49 #3461. MR 0338697 (49:3461)
  • [2] P. L. Butzer, R. J. Nessel and W. Trebels, On radial $ M_p^q$ Fourier multipliers, Math. Struct.-Computer Math. -Math. Modelling, Bulgarian Acad. Sci., Sofia, 1975, pp. 187-193.
  • [3] W. Connett and A. Schwartz, The theory of ultraspherical multipliers (to appear). MR 0435708 (55:8666)
  • [4] C. Fefferman, A note on spherical summation multipliers, Israel J. Math. 15 (1973), 44-52. MR 47 #9160. MR 0320624 (47:9160)
  • [5] I. J. Schoenberg, Metric spaces and completely monotone functions, Ann. of Math. (2) 39 (1938), 811-841. MR 1503439
  • [6] A. L. Schwartz, The smoothness of Hankel transforms, J. Math. Anal. Appl. 28 (1969), 500-507. MR 40 #3204. MR 0249963 (40:3204)
  • [7] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, N. J., 1970. MR 44 #7280. MR 0290095 (44:7280)
  • [8] E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Univ. Press, Princeton, N. J., 1971. MR 46 #4102. MR 0304972 (46:4102)
  • [9] P. A. Tomas, On radial Fourier multipliers, Thesis, Cornell Univ., 1974.
  • [10] W. Trebels, Multipliers for $ (C,\alpha )$-bounded Fourier expansions in Banach spaces and approximation theory, Lecture Notes in Math., vol. 329, Springer-Verlag, Berlin and New York, 1973. MR 0510852 (58:23307)
  • [11] -, On Fourier $ M_p^q$ multiplier criteria of Marcinkiewicz type, Studia Math. 58 (1976), 7-19. MR 0440265 (55:13143)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 42A18

Retrieve articles in all journals with MSC: 42A18


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1976-0412716-8
Keywords: Radial Fourier multipliers, fractional differentiation
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society