Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A generalization of the Hahn-Mazurkiewicz theorem


Author: L. E. Ward
Journal: Proc. Amer. Math. Soc. 58 (1976), 369-374
MSC: Primary 54F25
DOI: https://doi.org/10.1090/S0002-9939-1976-0413063-0
MathSciNet review: 0413063
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is proved that if a Hausdorff continuum $ X$ can be approximated by finite trees (see the text for definition) then there exists a (generalized) arc $ L$ and a continuous surjection $ \varphi :L \to X$.


References [Enhancements On Off] (What's this?)

  • [1] C. E. Capel, Inverse limit spaces, Duke Math. J. 21 (1954), 233-245. MR 15, 976. MR 0062417 (15:976c)
  • [2] J. L. Cornette, Image of a Hausdorff arc is cyclically extensible and reducible, Trans. Amer. Math. Soc. 199 (1974), 253-267. MR 0375257 (51:11453)
  • [3] J. L. Cornette and B. Lehman, Another locally connected Hausdorff continuum not connected by ordered continua, Proc. Amer. Math. Soc. 35 (1972), 281-284. MR 46 #6320. MR 0307200 (46:6320)
  • [4] H. Hahn, Mengentheoretische Charakterisierung der stetigen Kurven, Sitzungsber. Akad. Wiss. Wien 123 (1914), 2433-2489.
  • [5] J. G. Hocking and G. S. Young, Topology, Addison-Wesley, Reading, Mass., 1961. MR 23 #A2857. MR 0125557 (23:A2857)
  • [6] S. Mardešić, On the Hahn-Mazurkiewicz theorem in nonmetric spaces, Proc. Amer. Math. Soc. 11 (1960), 929-937. MR 22 #8464. MR 0117688 (22:8464)
  • [7] S. Mardešić and P. Papic, Continuous images of ordered continua, Glasnik Mat.-Fiz. Astronom. Društro Mat. Fiz. Hrvatske Ser. II 15 (1960), 171-178. MR 24 #A536. MR 0130676 (24:A536)
  • [8] S. Mazurkiewicz, Sur les lignes de Jordan, Fund. Math. 1 (1920), 166-209.
  • [9] S. B. Nadler, Jr., Multicoherence techniques applied to inverse limits, Trans. Amer. Math. Soc. 157 (1971), 227-234. MR 43 #5482. MR 0279761 (43:5482)
  • [10] B. J. Pearson, Mapping an arc onto a dendritic continuum, Colloq. Math. 30 (1974), 237-243. MR 0365530 (51:1782)
  • [11] -, Mapping arcs and dendritic spaces onto netlike continua, Colloq. Math. 34 (1975), 39-48. MR 0405373 (53:9167)
  • [12] L. B. Treybig, Concerning continuous images of compact ordered spaces, Proc. Amer. Math. Soc. 15 (1964), 866-871. MR 29 #5218. MR 0167953 (29:5218)
  • [13] -, Concerning continua which are continuous images of compact ordered spaces, Duke Math. J. 32 (1965), 417-422. MR 32 #4673. MR 0187220 (32:4673)
  • [14] E. D. Tymchatyn, The Hahn-Mazurkiewicz theorem for finitely Suslinian continua (to appear). MR 0431107 (55:4109)
  • [15] A. J. Ward, Notes on general topology. III, A non-metric image of an ordered compactum, Proc. Cambridge Philos. Soc. 61 (1965), 881-882. MR 32 #1685. MR 0184212 (32:1685)
  • [16] L. E. Ward, Jr., Mobs, trees and fixed points, Proc. Amer. Math. Soc. 8 (1957), 798-804. MR 20 #3516. MR 0097036 (20:3516)
  • [17] -, The Hahn-Mazurkiewicz theorem for rim-finite continua, General Topology and Appl. (to appear).
  • [18] G. T. Whyburn, Analytic topology, Amer. Math. Soc. Colloq. Publ., vol. 28, Amer. Math. Soc., Providence, R. I., 1942. MR 4, 86. MR 0007095 (4:86b)
  • [19] G. S. Young, Jr., Representations of Banach spaces, Proc. Amer. Math. Soc. 13 (1962), 667-668. MR 26 #574. MR 0143007 (26:574)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54F25

Retrieve articles in all journals with MSC: 54F25


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1976-0413063-0
Keywords: Hahn-Mazurkiewicz theorem, continuum, arc, continuous image of an arc, approximation by finite trees, approximation by a sequence of finite dendrites, inverse limit
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society