Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the number of separable locally convex spaces


Authors: Lech Drewnowski and Robert H. Lohman
Journal: Proc. Amer. Math. Soc. 58 (1976), 185-188
MSC: Primary 46A05
DOI: https://doi.org/10.1090/S0002-9939-1976-0417728-6
MathSciNet review: 0417728
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The number of distinct separable locally convex spaces is shown to be $ {2^{{2^c}}}$. The number of distinct separable and complete, or metrizable, or normed locally convex spaces is shown to be $ {2^c}$. There is no separable locally convex space that is quotient-universal for the class of separable locally convex spaces.


References [Enhancements On Off] (What's this?)

  • [1] S. Banach, Théorie des opérations linéaires, Mongrafie Mat., PWN, Warsaw, 1932; reprint, Chelsea, New York, 1955. MR 17, 175.
  • [2] S. Banach and S. Mazur, Zur Theorie der linearen Dimension, Studia Math. 4 (1933), 100-112.
  • [3] J. Diestel and R. H. Lohman, Applications of mapping theorems to Schwartz spaces and projections, Michigan Math. J. 20 (1973), 39-44. MR 47 #5541. MR 0316993 (47:5541)
  • [4] J. Dieudonné, Sur les propriétés de permanence de certains espaces vectoriels topologiques, Ann. Soc. Polon. Math. 25 (1952), 50-55. MR 15, 38. MR 0056189 (15:38b)
  • [5] R. Engelking, Outline of general topology, Wiley, New York, 1968. MR 0230273 (37:5836)
  • [6] S. Goldberg, Unbounded linear operators: Theory and applications, McGraw-Hill, New York, 1966. MR 34 #580. MR 0200692 (34:580)
  • [7] R. H. Lohman, An embedding theorem for separable locally convex spaces, Canad. Math. Bull. 14 (1971), 119-120. MR 0291756 (45:847)
  • [8] R. H. Lohman and W. J. Stiles, On separability in linear topological spaces, Proc. Amer. Math. Soc. 42 (1974), 236-237. MR 48 #4694. MR 0326350 (48:4694)
  • [9] S. Mazur and W. Orlicz, Sur les espaces métriques linéaires. II, Studia Math. 13 (1953), 137-179. MR 16, 932. MR 0068730 (16:932e)
  • [10] E. S. Pondiczery, Power problems in abstract spaces, Duke Math. J. 11 (1944), 835-837. MR 6, 119. MR 0011104 (6:119g)
  • [11] S. Rolewicz, Metric linear spaces, Polish Scientific Publishers, Warsaw, 1972. MR 0438074 (55:10993)
  • [12] S. Saxon and M. Levin, Every countable-codimensional subspace of a barrelled space is barrelled, Proc. Amer. Math. Soc. 29 (1971), 91-96. MR 43 #6691. MR 0280972 (43:6691)
  • [13] M. Valdivia, Absolutely convex sets in barrelled spaces, Ann. Inst. Fourier (Grenoble) 21 (1971), fasc. 2, 3-13. MR 48 #11968. MR 0333643 (48:11968)
  • [14] -, On weak compactness, Studia Math. 49 (1973), 35-40. MR 48 #11969. MR 0333644 (48:11969)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46A05

Retrieve articles in all journals with MSC: 46A05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1976-0417728-6
Keywords: Locally convex space, separable space, quotient-universal space
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society