Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

On Lie algebras with primitive envelopes, supplements


Author: Alfons I. Ooms
Journal: Proc. Amer. Math. Soc. 58 (1976), 67-72
MSC: Primary 17B35
DOI: https://doi.org/10.1090/S0002-9939-1976-0430007-6
MathSciNet review: 0430007
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ L$ be a finite dimensional Lie algebra over a field $ k$ of characteristic zero, $ U(L)$ its universal enveloping algebra and $ Z(D(L))$ the center of the division ring of quotients of $ U(L)$. A number of conditions on $ L$ are each shown to be equivalent with the primitive of $ U(L)$. Also, a formula is given for the transcendency degree of $ Z(D(L))$ over $ k$.


References [Enhancements On Off] (What's this?)

  • [1] Armand Borel, Linear algebraic groups, Notes taken by Hyman Bass, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0251042
  • [2] W. Borho, P. Gabriel and R. Rentschier, Primideale in Einhüllenden auflösbarer Liealgebren, Lecture Notes in Math., vol. 357, Springer-Verlag, Berlin and New York, 1973.
  • [3] Jacques Dixmier, Algèbres enveloppantes, Gauthier-Villars Éditeur, Paris-Brussels-Montreal, Que., 1974 (French). Cahiers Scientifiques, Fasc. XXXVII. MR 0498737
    Jacques Dixmier, Enveloping algebras, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. North-Holland Mathematical Library, Vol. 14; Translated from the French. MR 0498740
    Zh. Diksem′e and Ž. Diksm′e, \cyr Universal′nye obertyvayushchie algebry., Izdat. “Mir”, Moscow, 1978 (Russian). Translated from the French by Ju. A. Bahturin; Edited by D. P. Želobenko. MR 0498742
  • [4] I. M. Gelfand and A. A. Kirillov, Sur les corps liés aux algèbres enveloppantes des algèbres de Lie, Inst. Hautes Études Sci. Publ. Math. 31 (1966), 5–19 (French). MR 0207918
  • [5] Nathan Jacobson, Lie algebras, Interscience Tracts in Pure and Applied Mathematics, No. 10, Interscience Publishers (a division of John Wiley & Sons), New York-London, 1962. MR 0143793
  • [6] Nathan Jacobson, Structure of rings, American Mathematical Society Colloquium Publications, Vol. 37. Revised edition, American Mathematical Society, Providence, R.I., 1964. MR 0222106
  • [7] Alfons I. Ooms, On Lie algebras having a primitive universal enveloping algebra, J. Algebra 32 (1974), no. 3, 488–500. MR 0387365, https://doi.org/10.1016/0021-8693(74)90154-9
  • [8] Rudolf Rentschler and Michèle Vergne, Sur le semi-centre du corps enveloppant d’une algèbre de Lie, Ann. Sci. École Norm. Sup. (4) 6 (1973), 389–405 (French). MR 0360730

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 17B35

Retrieve articles in all journals with MSC: 17B35


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1976-0430007-6
Keywords: Finite dimensional Lie algebra, universal enveloping algebra, primitive algebra, division ring of quotients
Article copyright: © Copyright 1976 American Mathematical Society