Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Fibered knots in homotopy $ 3$-spheres


Author: Jonathan Simon
Journal: Proc. Amer. Math. Soc. 58 (1976), 325-328
MSC: Primary 55A40
DOI: https://doi.org/10.1090/S0002-9939-1976-0645362-1
MathSciNet review: 0645362
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Using the recently obtained result that each closed, orientable $ 3$-manifold has a fibered knot, we exhibit a new equivalent of the $ 3$-dimensional Poincaré conjecture.


References [Enhancements On Off] (What's this?)

  • [1] R. H. Bing and J. M. Martin, Cubes with knotted holes, Trans. Amer. Math. Soc. 155 (1971), 217-231. MR 43 #4018a. MR 0278287 (43:4018a)
  • [2] G. Bürde and H. Zieschang, Neuwirthsche Knoten und Flächenabbildungen, Abh. Math. Sem. Univ. Hamburg 31 (1967), 239-246. MR 37 #4803. MR 0229229 (37:4803)
  • [3] A. C. Connor, An algebraic characterization of the $ 3$-sphere, Manuscript. (See also: An algebraic characterization of $ 3$-manifolds, Notices Amer. Math. Soc. 17 (1970), 266. Abstract #672-635.)
  • [4] A. C. Connor, Splittable knots, Ph.D. Thesis, Univ. Georgia, Athens, Ga., 1969.
  • [5] F. González-Acuña, $ 3$-dimensional open books, Lectures, Univ. of Iowa Topology Seminar, 1974/75 (to appear).
  • [6] -, Dehn's construction on knots, Bol. Soc. Mat. Mexicana (2) 15 (1970), 58-79. MR 50 #8495. MR 0356022 (50:8495)
  • [7] L Neuwirth, Knot groups, Ann. of Math. Studies, no. 56, Princeton Univ. Press, Princeton, N.J., 1965. MR 31 #734. MR 0176462 (31:734)
  • [8] D. Noga, Über den Aussenraum von Productknoten und die Bedeutung der Fixgruppen, Math. Z. 101 (1967), 131-141. MR 36 #2137. MR 0219054 (36:2137)
  • [9] J. Simon, An algebraic classification of knots in $ {S^3}$, Ann. of Math. (2) 97 (1973), 1-13. MR 46 #9959. MR 0310861 (46:9959)
  • [10] John Stallings, On fibering certain $ 3$-manifolds, Topology of $ 3$-Manifolds and Related Topics (Proc. Univ. Georgia Inst., 1961), Prentice-Hall, Englewood Cliffs, N.J., 1962, pp. 95-100. MR 28 # 1600. MR 0158375 (28:1600)
  • [11] F. Waldhausen, On irreducible $ 3$-manifolds which are sufficiently large, Ann. of Math. (2) 87 (1968), 56-88. MR 36 #7146. MR 0224099 (36:7146)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 55A40

Retrieve articles in all journals with MSC: 55A40


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1976-0645362-1
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society