An embedding theorem for certain spaces with an equidistant property

Author:
Sam B. Nadler

Journal:
Proc. Amer. Math. Soc. **59** (1976), 179-183

MSC:
Primary 54E35

MathSciNet review:
0410686

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that certain metric spaces with the unique equidistant property can be topologically embedded in the real line. Several examples are given which show that the spaces considered are nontrivial, and which indicate that the technique of proof is necessary.

**[1]**Anthony D. Berard Jr.,*Characterizations of metric spaces by the use of their midsets: Intervals*, Fund. Math.**73**(1971/72), no. 1, 1–7. MR**0295300****[2]**A. D. Berard Jr. and W. Nitka,*A new definition of the circle by the use of bisectors*, Fund. Math.**85**(1974), no. 1, 49–55. MR**0355991****[3]**Witold Hurewicz and Henry Wallman,*Dimension Theory*, Princeton Mathematical Series, v. 4, Princeton University Press, Princeton, N. J., 1941. MR**0006493****[4]**K. Kuratowski, S. B. Nadler Jr., and G. S. Young,*Continuous selections on locally compact separable metric spaces*, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys.**18**(1970), 5–11 (English, with Loose Russian summary). MR**0264630****[5]**A. Lelek and W. Nitka,*On convex metric spaces. I*, Fund. Math.**49**(1960/1961), 183–204. MR**0124882****[6]**L. D. Loveland and J. E. Valentine,*Characterizing a circle with the double midset property*, Proc. Amer. Math. Soc.**53**(1975), no. 2, 443–444. MR**0388242**, 10.1090/S0002-9939-1975-0388242-0**[7]**L. D. Loveland and J. E. Valentine,*Convex metric spaces with 0-dimensional midsets*, Proc. Amer. Math. Soc.**37**(1973), 568–571. MR**0310817**, 10.1090/S0002-9939-1973-0310817-3**[8]**-,*Generalized midset properties characterize geodesic circles and intervals*(preprint).**[9]**L. D. Loveland and S. G. Wayment,*Characterizing a curve with the double midset property*, Amer. Math. Monthly**81**(1974), 1003–1006. MR**0418059****[10]**Edwin W. Miller,*On Subsets of a Continuous Curve which Lie on an Arc of the Continuous Curve*, Amer. J. Math.**54**(1932), no. 2, 397–416. MR**1506905**, 10.2307/2371004

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
54E35

Retrieve articles in all journals with MSC: 54E35

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1976-0410686-X

Keywords:
Dimension,
locally compact,
one-point compactification,
separability,
totally-disconnected

Article copyright:
© Copyright 1976
American Mathematical Society