Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On a theorem of Figà-Talamanca


Author: Martin E. Walter
Journal: Proc. Amer. Math. Soc. 60 (1976), 72-74
MSC: Primary 43A30
DOI: https://doi.org/10.1090/S0002-9939-1976-0420149-3
MathSciNet review: 0420149
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We give an example of a noncompact, unimodular group G with the property that $ B(G) \cap {C_0}(G) = A(G)$, where $ A(G)$ is the Fourier algebra of G, $ B(G)$ is the Fourier-Stieltjes algebra of G and $ {C_0}(G)$ is the set of all complex, continuous functions on G vanishing at infinity. This example answers negatively a question raised by A. Figà-Talamanca.


References [Enhancements On Off] (What's this?)

  • [1] G. Arsac, Sur l'espace de Banach engendré par les coefficients d'une representation unitaire, Thèse, L'Université Claude-Bernard-Lyon, 1973.
  • [2] L. Baggett, A description of the topology on the dual spaces of certain locally compact groups, Trans. Amer. Math. Soc. 132 (1968), 175-215. MR 0409720 (53:13472)
  • [3] -, A separable group having a discrete dual is compact, J. Functional Analysis 10 (1972), 131-148. MR 49 #10816. MR 0346090 (49:10816)
  • [4] J. Dixmier, Les $ {C^\ast}$-algèbres et leurs représentations, 2 ième ed., Gauthier-Villars, Paris, 1969. MR 39 #7442. MR 0246136 (39:7442)
  • [5] P. Eymard, L'algèbre de Fourier d'un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181-236. MR 37 #4208. MR 0228628 (37:4208)
  • [6] A. Figà-Talamanca, Positive definite functions which vanish at infinity (preprint). MR 0493175 (58:12206)
  • [7] G. Mackey, Unitary representations of group extensions. I, Acta Math. 99 (1958), 265-311. MR 20 #4789. MR 0098328 (20:4789)
  • [8] -, Induced representations of groups and quantum mechanics, Benjamin, New York, 1968. MR 0507212 (58:22373)
  • [9] J. Serre, Cours d'arithmétique, Presses Universitaires de France, Paris, 1970. MR 41 #138.
  • [10] M. E. Walter, $ {W^\ast}$-algebras and nonabelian harmonic analysis, J. Functional Analysis 11 (1972), 17-38. MR 50 #5365. MR 0352879 (50:5365)
  • [11] -, On the structure of the Fourier-Stieltjes algebra. Pacific J. Math. 58 (1975), 267-281. MR 0425008 (54:12966)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 43A30

Retrieve articles in all journals with MSC: 43A30


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1976-0420149-3
Keywords: Fourier and Fourier-Stieltjes algebra, inverse Fourier transform for nonabelian groups, positive definite function, singular Fourier-Stieltjes series
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society