Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the zeros of generalized axially symmetric potentials


Author: Peter A. McCoy
Journal: Proc. Amer. Math. Soc. 61 (1976), 54-58
MSC: Primary 31B15; Secondary 35B99
DOI: https://doi.org/10.1090/S0002-9939-1976-0477095-9
MathSciNet review: 0477095
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Generalized axially symmetric potentials may be expanded as Fourier-Jacobi series in terms of the complete system $ {r^k}C_k^{n/2 - 1}(\cos \theta )$ on axisymmetric regions $ \Omega \subset {E^n}(n \geqslant 3)$ about the origin. The values of these potentials are characterized by the nonnegativity of sequences of determinants drawn from the Fourier coefficients in a manner analogous to the characterization of the values of analytic functions of one complex variable by the theorems of Carathéodory-Toeplitz and Schur.


References [Enhancements On Off] (What's this?)

  • [1] S. Bergman, Integral operators in the theory of linear partial differential equations, Ergebnisse der Mathematik und ihrer Grenzgebiete, N. F., Heft 23, Springer-Verlag, Berlin and New York, 1961. MR 25 #5277. MR 0141880 (25:5277)
  • [2] -, Classes of solutions of linear partial differential equations in three variables, Duke Math. J. 13 (1946), 419-458. MR 8, 274. MR 0018323 (8:274c)
  • [3] R. P. Gilbert, Constructive methods for elliptic equations, Lecture Notes in Math., vol. 365, Springer-Verlag, Berlin and New York, 1974. MR 0447784 (56:6094)
  • [4] -, Function theoretic methods in partial differential equations, Math. in Science and Engineering, Vol. 54, Academic Press, New York, 1969. MR 39 #3127. MR 0241789 (39:3127)
  • [5] M. Marden, Geometry of polynomials, 2nd ed., Math. Surveys, No. 3, Amer. Math. Soc., Providence, R. I., 1966. MR 37 #1562. MR 0225972 (37:1562)
  • [6] -, A generalization of Weierstrass' and Fekete's mean-value theorems, Bull. Amer. Math. Soc. 38 (1932), 434-441. MR 1562413
  • [7] -, Further mean-value theorems, Bull. Amer. Math. Soc. 39 (1933), 750-754. MR 1562723
  • [8] -, Value distribution of harmonic polynomials in several real variables, Trans. Amer. Math. Soc. 159 (1971), 137-154. MR 43 #5046. MR 0279323 (43:5046)
  • [9] P. A. McCoy, Value distribution of axisymmetric potentials, Amer. J. Math. 95 (1973), 419-428. MR 48 #6450. MR 0328108 (48:6450)
  • [10] -, Value distribution of linear combinations of axisymmetric harmonic polynomials and their derivatives, Pacific J. Math. 48 (1973), 441-450. MR 0393513 (52:14322)
  • [11] -, Generalized axisymmetric potentials, J. Approximation Theory 15 (1975), 256-266. MR 0390261 (52:11087)
  • [12] M. Tsuji, Potential theory in modern function theory, Maruzen, Tokyo, 1958. MR 22 #5712. MR 0114894 (22:5712)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 31B15, 35B99

Retrieve articles in all journals with MSC: 31B15, 35B99


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1976-0477095-9
Keywords: Bergman and Gilbert's integral operators, Gilbert-Hadamard theorem, Carathéodory-Toeplitz and Schur theorems, zeros of potentials
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society