Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On certain extremal problems for functions with positive real part


Authors: Stephan Ruscheweyh and Vikramaditya Singh
Journal: Proc. Amer. Math. Soc. 61 (1976), 329-334
MSC: Primary 30A32
DOI: https://doi.org/10.1090/S0002-9939-1976-0425102-1
MathSciNet review: 0425102
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For the class $ P$ of analytic functions $ p(z),p(0) = 1$, with positive real part in $ \vert z\vert < 1$, a type of extremal problems is determined which can be solved already within the set $ p(z) = (1 + \varepsilon z)/(1 - \varepsilon z),\;\vert\varepsilon \vert = 1$. One problem of this kind is to find the largest number $ \rho (s,\;\mu )$ such that

$\displaystyle \operatorname{Re} \{ p(z) + szp'(z)/(p(z) + \mu )\} > 0,$

$ \vert z\vert \leqslant \rho (s,\;\mu )$, for all $ p \in P,\; - 1 \ne \mu \in {\mathbf{C}},\;s > 0$. Sharp upper bounds for two other functionals over $ P$ are also given.

References [Enhancements On Off] (What's this?)

  • [1] S. D. Bernardi, New distortion theorems for functions of positive real part and applications to the partial sums of univalent convex functions, Proc. Amer. Math. Soc. 45 (1974), 113-118. MR 50 #10223. MR 0357755 (50:10223)
  • [2] M. S. Robertson, Variational methods for functions with positive real part, Trans. Amer. Math. Soc. 102 (1962), 82-93. MR 24 #A3288. MR 0133454 (24:A3288)
  • [3] -, Extremal problems for analytic functions with positive real part and applications, Trans. Amer. Math. Soc. 106 (1963), 236-253. MR 26 #325. MR 0142756 (26:325)
  • [4] St. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc. 49 (1975), 109-115. MR 0367176 (51:3418)
  • [5] St. Ruscheweyh and T. Sheil-Small, Hadamard products of schlicht functions and the Pólya-Schoenberg conjecture, Comment. Math. Helv. 48 (1973), 119-135. MR 48 #6393. MR 0328051 (48:6393)
  • [6] K. Sakaguchi, A variational method for functions with positive real part, J. Math. Soc. Japan 16 (1964), 287-297. MR 31 #1375. MR 0177111 (31:1375)
  • [7] D. B. Shaffer, Distortion theorems for a special class of analytic functions, Notices Amer. Math. Soc. 19 (1972), A-519. Abstract #72T-B152. MR 0315113 (47:3662)
  • [8] T. J. Suffridge, Starlike functions as limits of polynomials (preprint). MR 0480975 (58:1122)
  • [9] H. Yoshikawa, On a subclass of spiral-like functions, Mem. Fac. Sci. Kyushu Univ. Ser. A 25 (1971), 271-279. MR 46 #9320. MR 0310218 (46:9320)
  • [10] V. A. Zmorovič, On bounds of convexity for starlike functions of order $ \alpha $ in the circle $ \vert z\vert < 1$ and in the circular region $ 0 < \vert z\vert < 1$, Mat. Sb. 68 (110) (1965), 518-526; English transl., Amer. Math. Soc. Transl. (2) 80 (1969), 203-213. MR 33 #5875. MR 0197712 (33:5875)
  • [11] -, On the bounds of starlikeness and univalence in certain classes of functions regular in the circle $ \vert z\vert < 1$, Ukrain. Mat. Ž. 18 (1966), 28-39; English transl., Amer. Math. Soc. Transl. (2) 80 (1969), 227-242. MR 33 #7525. MR 0199378 (33:7525)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30A32

Retrieve articles in all journals with MSC: 30A32


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1976-0425102-1
Keywords: Functions with positive real part, Hadamard product, spiral-convexity
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society