Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Asymptotic nonbases which are not subsets of maximal asymptotic nonbases


Author: Julien Hennefeld
Journal: Proc. Amer. Math. Soc. 62 (1977), 23-24
MSC: Primary 10L05
DOI: https://doi.org/10.1090/S0002-9939-1977-0506141-X
MathSciNet review: 0506141
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let A be a set of positive integers. If all but a finite number of the positive integers can be written as a sum of h elements of A, then A is called an asymptotic basis of order h. Otherwise, A is called an asymptotic nonbasis of order h. For each $ h \geqslant 2$, we construct an asymptotic nonbasis of order h which is not a subset of a maximal asymptotic nonbasis of order h.


References [Enhancements On Off] (What's this?)

  • [1] P. Erdös and M. B. Nathanson, Maximal asymptotic nonbases, Proc. Amer. Math. Soc. 48 (1975), 57-60. MR 50 #9831. MR 0357363 (50:9831)
  • [2] -, Oscillations of bases for the natural numbers, Proc. Amer. Math. Soc. 53 (1975), 253-258. MR 0384739 (52:5612)
  • [3] M. B. Nathanson, Minimal bases and maximal nonbases in additive number theory, J. Number Theory 6 (1974), 324-333. MR 50 #265. MR 0347764 (50:265)
  • [4] A. Stöhr, Gelöste und ungelöstee Fragen über Basen der natürlichen Zahlentheorie. I, J. Reine Angew Math. 194 (1955), 40-65. MR 0075228 (17:713a)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 10L05

Retrieve articles in all journals with MSC: 10L05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1977-0506141-X
Keywords: Sum sets, asymptotic bases, asymptotic nonbases, maximal nonbases
Article copyright: © Copyright 1977 American Mathematical Society

American Mathematical Society