Finite groups with a standard component whose centralizer has cyclic Sylow -subgroups

Author:
Larry Finkelstein

Journal:
Proc. Amer. Math. Soc. **62** (1977), 237-241

MSC:
Primary 20D05

DOI:
https://doi.org/10.1090/S0002-9939-1977-0439928-2

MathSciNet review:
0439928

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let *G* be a finite group with , *A* a standard component of *G* and *X* the normal closure of *A* in *G*. Furthermore, assume that has cyclic Sylow 2-subgroups. Then conditions are given on *A* which imply that either or has Sylow 2-subgroups of order 2. These results are then applied to the cases where *A* is isomorphic to or *Ru*, proper 2-fold covering of the Rudvalis group.

**[1]**J. Alperin, R. Brauer and D. Gorenstein,*Finite groups with quasi-dihedral and wreathed Sylow*2-*subgroups*, Trans. Amer. Math. Soc.**151**(1970), 1-261. MR**44**#1724. MR**0284499 (44:1724)****[2]**M. Aschbacher,*A characterization of certain Chevalley groups and its application to component type groups*, Proceedings of the Conference on Finite Groups, Academic Press, New York, 1976. MR**0401903 (53:5729)****[3]**-,*On finite groups of component type*, Illinois J. Math.**19**(1975), 87-115. MR**51**#13018. MR**0376843 (51:13018)****[4]**-,*Standard components of alternating type centralized by a*4-*group*(to appear).**[5]**-,*Finite groups in which the generalized fitting subgroup of the centralizer of some involution is symplectic but not extra special*, Comm. Algebra**4**(1976), 595-616. MR**0407144 (53:10927)****[6]**M. Aschbacher and G. Seitz,*On groups with a standard component of known type*(to appear). MR**0435200 (55:8161)****[7]**J. Conway and D. Wales,*Construction of the Rudvalis group of order*145,926,144,000, J. Algebra**27**(1974), 538-548. MR**49**#400. MR**0335620 (49:400)****[8]**L. Finkelstein,*Finite groups in which the centralizer of an involution is*.0, J. Algebra**32**(1974), 173-177. MR**0439935 (55:12816)****[9]**-,*Finite groups with a standard component isomorphic to HJ or HJM*, J. Algebra (to appear). MR**0427450 (55:482)****[10]**G. Glauberman,*Central elements in core-free groups*, J. Algebra**4**(1966), 403-420. MR**34**#2681. MR**0202822 (34:2681)****[11]**R. Griess,*Schur multipliers of some sporadic simple groups*, J. Algebra**32**(1974), 445-466. MR**0382426 (52:3310)****[12]**K. Harada,*On the simple group F of order*, Proceedings of the Conference on Finite Groups, Academic Press, New York, 1976. MR**0401904 (53:5730)****[13]**M. O'Nan,*Some evidence for the existence of a new simple group*, Proc. London Math. Soc.**32**(1976), 421-479. MR**0401905 (53:5731)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
20D05

Retrieve articles in all journals with MSC: 20D05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1977-0439928-2

Article copyright:
© Copyright 1977
American Mathematical Society