Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

The curvatures of some skew fundamental forms


Author: Tilla Klotz Milnor
Journal: Proc. Amer. Math. Soc. 62 (1977), 323-329
MSC: Primary 53C40
MathSciNet review: 0461383
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Fix a unit normal vector field on a surface $ {C^4}$-immersed in a Riemannian 3-manifold of constant sectional curvature. Suppose H and K are mean and Gauss curvatures respectively, and that $ H' = \sqrt {{H^2} - K} $. Wherever $ H' \ne 0$, define I', II' and III' by $ H'$I$ ' =$   II$ - H$I$ , H'$II$ ' = H$II$ - K$I and III$ ' = H$II$ ' - K$I$ '$, where I and II are the first and second fundamental forms. For constants $ \alpha ,\beta $, and $ \gamma $, let $ \Lambda ' = \alpha {\text{I}}' + \beta {\text{II}}' + \gamma {\text{III}}'$. Wherever $ H' \ne 0$ and $ \Lambda '$ is nondegenerate, the curvature of this (not necessarily Riemannian) metric $ \Lambda '$ is computed in terms of $ K({\text{I}}')$ and more familiar quantities on the surface. Some discussion of $ K({\text{I}}')$ is also included.


References [Enhancements On Off] (What's this?)

  • [1] S. S. Chern, Pseudo-Riemannian geometry and the Gauss-Bonnet formula, An. Acad. Brasil Ci. 35 (1963), 17-26. MR 27 #5196. MR 0155261 (27:5196)
  • [2] N. J. Hicks, Notes on differential geometry, Van Nostrand, Princeton, N.J., 1965. MR 31 #3936. MR 0179691 (31:3936)
  • [3] E. Hopf, Über den functionalen, insbesondere den analytischen Charakter der Lösungen elliptischer Differentialgleichungen zweiter Ordnung, Math. Z. 34 (1931), 194-233. MR 1545250
  • [4] T. Klotz, Another conformal structure on immersed surfaces of negative curvature, Pacific J. Math. 13 (1963), 1281-1288. MR 28 #532. MR 0157297 (28:532)
  • [5] -, Surfaces harmonically immersed in $ {E^3}$, Pacific J. Math. 21 (1967), 79-87. MR 38 #646. MR 0232321 (38:646)
  • [6] -, A complete $ {R_\Lambda }$-harmonically immersed surface in $ {E^3}$ on which $ H \ne 0$, Proc. Amer. Math. Soc. 19 (1968), 1296-1298. MR 38 #1641. MR 0233319 (38:1641)
  • [7] T. Klotz and R. Osserman, Complete surfaces in $ {E^3}$ with constant mean curvature, Comment. Math. Helv. 41 (1966/67), 313-318. MR 35 #2213. MR 0211332 (35:2213)
  • [8] T. K. Milnor, Complete, open surfaces in $ {E^3}$, Proc. Sympos. Pure Math., vol. 27, Part 1, Amer. Math. Soc., Providence, R.I., 1975, pp. 183-187. MR 52 #1533. MR 0380636 (52:1533)
  • [9] -, The curvature of $ \alpha {\text{I}} + \beta {\text{II}} + \gamma {\text{III}}$ on a surface in a 3-manifold of constant curvature, Michigan Math. J. 22 (1975), 247-255. MR 0402653 (53:6469)
  • [10] -, Restrictions on the curvatures of $ \Phi $-bounded surfaces, J. Differential Geometry 11 (1976), 31-46. MR 0461382 (57:1367)
  • [11] M. Spivak, Some left-over problems from classical differential geometry, Proc. Sympos. Pure Math., vol. 27, Part 1, Amer. Math. Soc., Providence, R.I., 1975, pp. 245-252. MR 51 #6863. MR 0420516 (54:8530)
  • [12] D. J. Struik, Lectures on classical differential geometry, Addison-Wesley, Reading, Mass., 1950. MR 12, 127. MR 0036551 (12:127f)
  • [13] J. A. Wolf, Surfaces of constant mean curvature, Proc. Amer. Math. Soc. 17 (1966), 1103-1111. MR 34 #765. MR 0200879 (34:765)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 53C40

Retrieve articles in all journals with MSC: 53C40


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1977-0461383-7
PII: S 0002-9939(1977)0461383-7
Article copyright: © Copyright 1977 American Mathematical Society