The solution by iteration of nonlinear equations in Hilbert spaces

Author:
Şt. Măruşter

Journal:
Proc. Amer. Math. Soc. **63** (1977), 69-73

MSC:
Primary 47H10

DOI:
https://doi.org/10.1090/S0002-9939-1977-0636944-2

MathSciNet review:
0636944

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The weak and strong convergence of the iterates generated by to a fixed point of the mapping are investigated, where *C* is a closed convex subset of a real Hilbert space. The basic assumptions are that *T* has at least one fixed point in *C*, and that is demiclosed at 0 and satisfies a certain condition of monotony. Some applications are given.

**[1]**S. Agmon,*The relaxation method for linear inequalities*, Canad. J. Math.**6**(1954), 382-392. MR**16**, 18. MR**0062786 (16:18d)****[2]**F. E. Browder and W. V. Petryshyn,*The solution by iteration of nonlinear functional equations in Banach spaces*, Bull. Amer. Math. Soc.**72**(1966), 571-575. MR**32**#8155b. MR**0190745 (32:8155b)****[3]**J. B. Diaz and F. T. Metcalf,*On the set of subsequential limit points of successive approximations*, Trans. Amer. Math. Soc.**135**(1969), 459-485. MR**38**#2644. MR**0234327 (38:2644)****[4]**W. G. Dotson, Jr.,*On the Mann iterative process*, Trans. Amer. Math. Soc.**149**(1970), 65-73. MR**41**#2477. MR**0257828 (41:2477)****[5]**I. I. Eremin,*The generalization of the relaxation method of Motzkin and Agmon*, Uspehi Mat. Nauk**20**(1965), no. 2 (122), 183-187. (Russian) MR**34**#2342. MR**0202473 (34:2342)****[6]**T. S. Motzkin and I. J. Schoenberg,*The relaxation method for linear inequalities*, Canad. J. Math.**6**(1954), 393-404. MR**16**, 18. MR**0062787 (16:18e)****[7]**C. Outlaw,*Mean value iteration of nonexpansive mappings in a Banach space*, Pacific J. Math.**30**(1969), 747-750. MR**40**#807. MR**0247542 (40:807)****[8]**W. V. Petryshyn and T. E. Williamson, Jr.,*Strong and weak convergence of the sequence of successive approximations for quasi-nonexpansive mappings*, J. Math. Anal. Appl.**43**(1973), 459-497. MR**48**#4854. MR**0326510 (48:4854)****[9]**H. Schaefer,*Über die Methode sukzessiver Approximationen*, Jber Deutsch. Math. Verein.**59**(1957), Abt. 1, 131-140. MR**18**, 811. MR**0084116 (18:811g)****[10]**H. F. Senter and W. G. Dotson,*Approximating fixed points of nonexpansive mappings*, Proc. Amer. Math. Soc.**44**(1974), 375-380. MR**49**#11333 MR**0346608 (49:11333)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
47H10

Retrieve articles in all journals with MSC: 47H10

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1977-0636944-2

Keywords:
Iteration,
fixed points,
demiclosed mappings,
monotone mappings

Article copyright:
© Copyright 1977
American Mathematical Society