A bound for the number of automorphisms of a compact Klein surface with boundary
Author:
Coy L. May
Journal:
Proc. Amer. Math. Soc. 63 (1977), 273280
MSC:
Primary 30A46; Secondary 14H30, 32L05
MathSciNet review:
0435385
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: For an integer , let be the order of the largest group of automorphisms of a compact Klein surface with nonempty boundary of genus g. We show that for all g and that for an infinite number of values of .
 [1]
Robert
D. M. Accola, On the number of automorphisms of a
closed Riemann surface, Trans. Amer. Math.
Soc. 131 (1968),
398–408. MR 0222281
(36 #5333), http://dx.doi.org/10.1090/S00029947196802222816
 [2]
Norman
L. Alling and Newcomb
Greenleaf, Foundations of the theory of Klein surfaces,
Lecture Notes in Mathematics, Vol. 219, SpringerVerlag, Berlin, 1971. MR 0333163
(48 #11488)
 [3]
Maurice
Heins, On the number of 11 directly
conformal maps which a multiplyconnected plane region of finite
connectivity 𝑝(>2) admits onto itself, Bull. Amer. Math. Soc. 52 (1946), 454–457. MR 0016469
(8,21d), http://dx.doi.org/10.1090/S000299041946085900
 [4]
A.
Hurwitz, Ueber algebraische Gebilde mit eindeutigen
Transformationen in sich, Math. Ann. 41 (1892),
no. 3, 403–442 (German). MR
1510753, http://dx.doi.org/10.1007/BF01443420
 [5]
Takao
Kato, On the number of automorphisms of a compact bordered Riemann
surface, Kōdai Math. Sem. Rep. 24 (1972),
224–233. MR 0306484
(46 #5610)
 [6]
C.
Maclachlan, A bound for the number of automorphisms of a compact
Riemann surface., J. London Math. Soc. 44 (1969),
265–272. MR 0236378
(38 #4674)
 [7]
Coy
L. May, Automorphisms of compact Klein surfaces with boundary,
Pacific J. Math. 59 (1975), no. 1, 199–210. MR 0399451
(53 #3295)
 [8]
Coy
L. May, Large automorphism groups of compact Klein surfaces with
boundary. I, Glasgow Math. J. 18 (1977), no. 1,
1–10. MR
0425113 (54 #13071)
 [9]
, Cyclic automorphism groups of compact Klein surfaces with boundary (to appear).
 [10]
Kôtaro
Oikawa, Notes on conformal mappings of a Riemann surface onto
itself, Kōdai Math. Sem. Rep. 8 (1956),
23–30. MR
0080730 (18,290d)
 [11]
W.
R. Scott, Group theory, PrenticeHall Inc., Englewood Cliffs,
N.J., 1964. MR
0167513 (29 #4785)
 [12]
Ryōhei
Tsuji, On conformal mapping of a hyperelliptic Riemann surface onto
itself., Kōdai Math. Sem. Rep. 10 (1958),
127–136. MR 0100085
(20 #6521)
 [1]
 R. D. M. Accola, On the number of automorphisms of a closed Riemann surface, Trans. Amer. Math. Soc. 131 (1968), 398408. MR 36 #5333. MR 0222281 (36:5333)
 [2]
 N. L. Alling and N. Greenleaf, Foundations of the theory of Klein surfaces, SpringerVerlag, Berlin and New York, 1971. MR 0333163 (48:11488)
 [3]
 M. Heins, On the number of directly conformal maps which a multiplyconnected plane region of finite connectivity admits onto itself, Bull. Amer. Math. Soc. 52 (1946), 454457. MR 8, 21. MR 0016469 (8:21d)
 [4]
 A. Hurwitz, Über algebraische Gebilde mit eindeutigen Transformationen in sich, Math. Ann. 41 (1893), 403442. MR 1510753
 [5]
 Takao Kato, On the number of automorphisms of a compact bordered Riemann surface, Kōdai Math. Sem. Rep. 24 (1972), 224233. MR 46 #5610. MR 0306484 (46:5610)
 [6]
 C. Maclachlan, A bound for the number of automorphisms of a compact Riemann surface, J. London Math. Soc. 44 (1969), 265272. MR 38 #4674. MR 0236378 (38:4674)
 [7]
 C. L. May, Automorphisms of compact Klein surfaces with boundary, Pacific J. Math. 59 (1975), 199210. MR 0399451 (53:3295)
 [8]
 , Large automorphism groups of compact Klein surfaces with boundary. I, Glasgow Math. J. 18 (1977), 110. MR 0425113 (54:13071)
 [9]
 , Cyclic automorphism groups of compact Klein surfaces with boundary (to appear).
 [10]
 K. Oikawa, Notes on conformal mappings of a Riemann surface onto itself, Kōdai Math. Sem. Rep. 8 (1956), 2330; A supplement to ``Notes on conformal mappings of a Riemann surface onto itself", ibid. 8 (1956), 115116. MR 18, 290; 797. MR 0080730 (18:290d)
 [11]
 W. R. Scott, Group theory, PrenticeHall, Englewood Cliffs, N.J., 1964. MR 29 #4785. MR 0167513 (29:4785)
 [12]
 R. Tsuji, On conformal mapping of a hyperelliptic Riemann surface onto itself, Kōdai Sem. Rep. 10 (1958), 127136. MR 20 #6521. MR 0100085 (20:6521)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
30A46,
14H30,
32L05
Retrieve articles in all journals
with MSC:
30A46,
14H30,
32L05
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029939197704353850
PII:
S 00029939(1977)04353850
Keywords:
Klein surface,
automorphism group,
algebraic genus,
complex double,
Riemann surface,
ramified covering,
Hurwitz ramification formula
Article copyright:
© Copyright 1977 American Mathematical Society
