Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

A bound for the number of automorphisms of a compact Klein surface with boundary


Author: Coy L. May
Journal: Proc. Amer. Math. Soc. 63 (1977), 273-280
MSC: Primary 30A46; Secondary 14H30, 32L05
MathSciNet review: 0435385
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For an integer $ g \geqslant 2$, let $ \nu (g)$ be the order of the largest group of automorphisms of a compact Klein surface with nonempty boundary of genus g. We show that $ \nu (g) \geqslant 4(g + 1)$ for all g and that for an infinite number of values of $ \nu (g) = 4(g + 1)$.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30A46, 14H30, 32L05

Retrieve articles in all journals with MSC: 30A46, 14H30, 32L05


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1977-0435385-0
PII: S 0002-9939(1977)0435385-0
Keywords: Klein surface, automorphism group, algebraic genus, complex double, Riemann surface, ramified covering, Hurwitz ramification formula
Article copyright: © Copyright 1977 American Mathematical Society