Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

$ \aleph \sb{0}$-categoricity of partially ordered sets of width $ 2.$


Author: J. H. Schmerl
Journal: Proc. Amer. Math. Soc. 63 (1977), 299-305
MSC: Primary 02G15; Secondary 02G20, 02H05
MathSciNet review: 0439615
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A result of J. Rosenstein is that every $ {\aleph _0}$-categorical theory of linear order is finitely axiomatizable. We extend this to the case of partially ordered sets of width 2.


References [Enhancements On Off] (What's this?)

  • [1] R. Amit and S. Shelah, The complete finitely axiomatized theories of order are dense, Israel J. Math. 23 (1976), no. 3-4, 200–208. MR 0485315
  • [2] R. P. Dilworth, A decomposition theorem for partially ordered sets, Ann. of Math. (2) 51 (1950), 161–166. MR 0032578
  • [3] S. Feferman and R. L. Vaught, The first order properties of products of algebraic systems, Fund. Math. 47 (1959), 57–103. MR 0108455
  • [4] Joseph G. Rosenstein, ℵ₀-categoricity of linear orderings, Fund. Math. 64 (1969), 1–5. MR 0242652
  • [5] C. Ryll-Nardzewski, On the categoricity in power ≤ℵ₀, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 7 (1959), 545–548. (unbound insert) (English, with Russian summary). MR 0111681
  • [6] James H. Schmerl, On ℵ₀-categoricity and the theory of trees, Fund. Math. 94 (1977), no. 2, 121–128. MR 0437337
  • [7] -, $ {\aleph _0}$-categoricity of partially ordered sets of width 2, Notices Amer. Math. Soc. 23 (1976), A-496. Abstract #76T-E51.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 02G15, 02G20, 02H05

Retrieve articles in all journals with MSC: 02G15, 02G20, 02H05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1977-0439615-0
Keywords: $ {\aleph _0}$-categoricity, partial order, finite axiomatizability
Article copyright: © Copyright 1977 American Mathematical Society