Linear homeomorphisms of some classical families of univalent functions

Author:
Frederick W. Hartmann

Journal:
Proc. Amer. Math. Soc. **63** (1977), 265-272

MSC:
Primary 30A36

DOI:
https://doi.org/10.1090/S0002-9939-1977-0454002-7

MathSciNet review:
0454002

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The extreme points of the closed convex hull of some classical families of univalent functions analytic on the open unit disk, e.g. the convex, *K*, and starlike, *St*, have recently been characterized. These characterizations are used to determine an explicit representation for the class of linear homeomorphisms of the extreme points of the closed convex hulls of *K* and *St* and thus of the hulls themselves. With the aid of these representations it is shown that every linear homeomorphism of *K* or *St* is a rotation, i.e. convolution with . In the way of a positive result: if is the convex set of analytic functions with positive real part and and is a linear homeomorphism of , then , but .

**[1]**L. Brickman, T. H. MacGregor and D. R. Wilken,*Convex hulls of some classical families of univalent functions*, Trans. Amer. Math. Soc.**156**(1971), 91-107. MR**43**#494. MR**0274734 (43:494)****[2]**J. Clunie and F. R. Keogh,*On starlike and convex schlicht functions*, J. London Math. Soc.**35**(1960), 229-233. MR**22**# 1682. MR**0110814 (22:1682)****[3]**N. Dunford and J. T. Schwartz,*Linear operators*. I.*General theory*, Pure and Appl. Math., vol. 7, Interscience, New York, 1958. MR**22**#8302. MR**0117523 (22:8302)****[4]**M. G. Haplanov,*Infinite matrices in an analytic space*, Uspehi Mat. Nauk**11**(1956), no. 5(71), 37-44; English transl., Amer. Math. Soc. Transl. (2)**13**(1960), 177-183. MR**18**, 810;**22**#3977. MR**0084105 (18:810a)****[5]**F. W. Hartmann and T. H. MacGregor,*Matrix transformations of univalent power series*, J. Austral. Math. Soc.**28**(1974), 419-435. MR**0374397 (51:10597)****[6]**T. H. MacGregor,*Hull subordination and extremal problems for starlike and spiral-like mappings*, Trans. Amer. Math. Soc.**183**(1973), 499-510. MR**49**#3104. MR**0338339 (49:3104)****[7]**R. M. Robinson,*Univalent majorants*, Trans. Amer. Math. Soc.**61**(1947), 1-35. MR**8**#370. MR**0019114 (8:370e)****[8]**St. Ruscheweyh and T. Sheil-Small,*Hadamard products of schlicht functions and the Pólya-Schoenberg conjecture*, Comment. Math. Helv.**48**(1973), 119-135. MR**48**#6393. MR**0328051 (48:6393)****[9]**T. B. Sheil-Small,*Some linear operators in function theory*, Sympos. on Complex Analysis, Canterbury, 1973. MR**0417429 (54:5479)****[10]**-,*On the preservation of linear structure for analytic and harmonic functions*(to appear).**[11]**A. Wilansky,*Functional analysis*, Blaisdell, New York, 1964. MR**30**#425. MR**0170186 (30:425)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
30A36

Retrieve articles in all journals with MSC: 30A36

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1977-0454002-7

Keywords:
Continuous linear operator,
matrix transformation,
functions with positive real part,
extreme points,
closed convex hull,
linear homeomorphism,
univalent functions,
starlike mappings,
convex mappings,
Krein-Milman theorem

Article copyright:
© Copyright 1977
American Mathematical Society