Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Landau-Kolmogorov inequalities for semigroups and groups


Authors: Melinda W. Certain and Thomas G. Kurtz
Journal: Proc. Amer. Math. Soc. 63 (1977), 226-230
MSC: Primary 47D05
MathSciNet review: 0458242
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: An elementary functional analytic argument is given showing how inequalities of the form $ {\left\Vert {{f^{(k)}}} \right\Vert^n} \leqslant {K_{n,k}}{\left\Vert f \right\Vert^{n - k}}{\left\Vert {{f^{(n)}}} \right\Vert^k}$, where f is a real, n-times differentiable function and $ \left\Vert \cdot \right\Vert$ denotes the sup norm on $ (0,\infty )$ (or $ ( - \infty ,\infty )$), yield corresponding inequalities, $ \vert{A^k}x{\vert^n} \leqslant {K_{n,k}}\vert x{\vert^{n - k}}\vert{A^n}x{\vert^k}$, for generators of linear contraction semigroups (or groups) on arbitrary Banach spaces with norm $ \vert \cdot \vert$. Since Landau, Kolmogorov, Schoenberg and Cavaretta have established the function inequalities with the best possible constants, this argument gives the generator inequalities with the best possible constants for general Banach spaces extending work of Kallman and Rota, Hille and others. Questions concerning the best possible constants for specific Banach spaces remain open.


References [Enhancements On Off] (What's this?)

  • [1] A. S. Cavaretta Jr., An elementary proof of Kolmogorov’s theorem, Amer. Math. Monthly 81 (1974), 480–486. MR 0340517
  • [2] M. Certain, Some theorems on semigroups and groups of operators, Ph.D. thesis, Univ. of Wisconsin, 1974.
  • [3] Z. Ditzian, Some remarks on inequalities of Landau and Kolmogorov, Aequationes Math. 12 (1975), no. 2/3, 145–151. MR 0380503
  • [4] Z. Ditzian, Inverse theorems for functions in 𝐿_{𝑝} and other spaces, Proc. Amer. Math. Soc. 54 (1976), 80–82. MR 0393958, 10.1090/S0002-9939-1976-0393958-7
  • [5] Herbert A. Gindler and Jerome A. Goldstein, Dissipative operator versions of some classical inequalities, J. Analyse Math. 28 (1975), 213–238. MR 0482361
  • [6] J. Goldstein, On improving the constants in the Kolmogorov inequalities, Tulane Univ., 1976 (preprint).
  • [7] Einar Hille, Generalizations of Landau’s inequality to linear operators, Linear operators and approximation (Proc. Conf., Oberwolfach, 1971), Birkhäuser, Basel, 1972, pp. 20–32. Internat. Ser. Numer. Math., Vol. 20. MR 0402535
  • [8] John A. R. Holbrook, A Kallman-Rota inequality for nearly Euclidean spaces, Advances in Math. 14 (1974), 335–345. MR 0454732
  • [9] Robert R. Kallman and Gian-Carlo Rota, On the inequality \Vert𝑓′\Vert²≦4\Vert𝑓\Vert⋅\Vert𝑓”\Vert, Inequalities, II (Proc. Second Sympos., U.S. Air Force Acad., Colo., 1967), Academic Press, New York, 1970, pp. 187–192. MR 0278059
  • [10] A. N. Kolmogorov, On inequalities between the upper bounds of the successive derivatives of an arbitrary function on an infinite interval, Amer. Math. Soc. Transl. (1) 2 (1962), 233-243.
  • [11] E. Landau, Einige Ungleichungen für zweimal differenziebare Funktionen, Proc. London Math. Soc. (2) 13 (1913), 43-49.
  • [12] I. J. Schoenberg, The elementary cases of Landau’s problem of inequalities between derivatives, Amer. Math. Monthly 80 (1973), 121–158. MR 0315070
  • [13] I. J. Schoenberg and A. Cavaretta, Solution of Landau's problem concerning higher derivatives on the halfline, MRC T.S.R. 1060, Madison, Wis., 1970.
  • [14] W. Trebels and U. Westphal, A note on the Landau-Kallman-Rota-Hille inequality, Linear operators and approximation (Proc. Conf., Oberwolfach, 1971), Birkhäuser, Basel, 1972, pp. 115–119. Internat. Ser. Numer. Math., Vol. 20. MR 0402536

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47D05

Retrieve articles in all journals with MSC: 47D05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1977-0458242-2
Keywords: Semigroup generators, group generators, Kallman-Rota Inequality
Article copyright: © Copyright 1977 American Mathematical Society