Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

On a group that cannot be the group of a $ 2$-knot


Author: Kunio Murasugi
Journal: Proc. Amer. Math. Soc. 64 (1977), 154-156
MSC: Primary 55A25
MathSciNet review: 0440530
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is proved that a homomorph of the group of trefoil knot cannot be the group of a 2-knot in 4-sphere.


References [Enhancements On Off] (What's this?)

  • [1] H. S. M. Coxeter and W. O. J. Moser, Generators and relations for discrete groups, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1957. MR 0088489
  • [2] R. H. Fox, Some problems in knot theory, Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961) Prentice-Hall, Englewood Cliffs, N.J., 1962, pp. 168–176. MR 0140100
  • [3] Heinz Hopf, Fundamentalgruppe und zweite Bettische Gruppe, Comment. Math. Helv. 14 (1942), 257–309 (German). MR 0006510
  • [4] Michel A. Kervaire, On higher dimensional knots, Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), Princeton Univ. Press, Princeton, N.J., 1965, pp. 105–119. MR 0178475

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 55A25

Retrieve articles in all journals with MSC: 55A25


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1977-0440530-7
Keywords: n-knot, knot group
Article copyright: © Copyright 1977 American Mathematical Society