Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Sums of powers in large finite fields


Author: Charles Small
Journal: Proc. Amer. Math. Soc. 65 (1977), 35-36
MSC: Primary 12C15
MathSciNet review: 0485801
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: If k is a positive integer, then, in any finite field with more than $ {(k - 1)^4}$ elements, every element is a sum of two kth powers.


References [Enhancements On Off] (What's this?)

  • [1] A. Hurwitz, Über die Kongruenz $ a{x^e} + b{y^e} + c{z^e} \equiv 0\; \pmod p$, J. Reine Angew. Math. 136 (1909), 272-292.
  • [2] Jean-René Joly, Équations et variétés algébriques sur un corps fini, Enseignement Math. (2) 19 (1973), 1–117 (French). MR 0327723
  • [3] I. Kaplansky, Private communications, October 7, 1975 and August 25, 1976.
  • [4] Trygve Nagell, On the solvability of some congruences, Norske Vid. Selsk. Forh., Trondheim 27 (1954), no. 3, 5. MR 0064066
  • [5] Th. Skolem, Unlösbarkeit von Gleichungen, deren entsprechende Kongruenz für jeden Modul lösbar ist, Avh. Norske Vid. Akad. Oslo. I. 1942 (1942), no. 4, 28 (German). MR 0016380
  • [6] Charles Small, Waring’s problem 𝑚𝑜𝑑 𝑛, Amer. Math. Monthly 84 (1977), no. 1, 12–25. MR 0424734
  • [7] Charles Small, Solution of Waring’s problem 𝑚𝑜𝑑𝑛, Amer. Math. Monthly 84 (1977), no. 5, 356–359. MR 0439787

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 12C15

Retrieve articles in all journals with MSC: 12C15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1977-0485801-3
Article copyright: © Copyright 1977 American Mathematical Society