Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Reflexivity of topological groups


Author: Peter Nickolas
Journal: Proc. Amer. Math. Soc. 65 (1977), 137-141
MSC: Primary 22A05
DOI: https://doi.org/10.1090/S0002-9939-1977-0486276-0
MathSciNet review: 0486276
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that under mild conditions the path-component of the identity in the dual group $ G\hat \emptyset $ of an Abelian topological group G is precisely the union of the one-parameter subgroups of $ G\hat \emptyset $. This yields several corollaries, including a necessary condition for certain groups to be reflexive (to satisfy the Pontrjagin duality theorem), and a negative answer to a question of N. Noble.


References [Enhancements On Off] (What's this?)

  • [1] R. Brown, P. J. Higgins and S. A. Morris, Countable products and sums of lines and circles; their closed subgroups, quotients and duality properties, Math. Proc. Cambridge Philos. Soc. 78 (1975), 19-32. MR 0453915 (56:12168)
  • [2] J. Dugundji, Topology, Allyn and Bacon, Boston, 1970. MR 33 #1824. MR 0478089 (57:17581)
  • [3] B. R. Gelbaum, Free topological groups, Proc. Amer. Math. Soc. 12 (1961), 737-743. MR 25 #4025. MR 0140607 (25:4025)
  • [4] E. Hewitt and K. A. Ross, Abstract harmonic analysis, Vol. 1, Grundlehren Math. Wiss., Band 115, Springer-Verlag, Berlin, 1963. MR 28 #158.
  • [5] K. H. Hofmann, Introduction to the theory of compact groups, Part 1, duplicated lecture notes, 1966/67.
  • [6] D. C. Hunt and S. A. Morris, Free subgroups of free topological groups, Proc. Second Internat. Conf. on Theory of Groups, Lecture Notes in Math., vol.372, Springer-Verlag, Berlin and New York, 1974, pp. 377-387. MR 0352317 (50:4804)
  • [7] S. Kaplan, Extensions of the Pontrjagin duality. I: Infinite products, Duke Math. J. 15 (1948), 649-658. MR 10, 233. MR 0026999 (10:233c)
  • [8] -, Extensions of the Pontrjagin duality. II: Direct and inverse sequences, Duke Math. J. 17 (1950), 419-435. MR 14, 245. MR 0049906 (14:245c)
  • [9] H. Leptin, Zur Dualitätstheorie projektiver Limites abelscher Gruppen, Abh. Math. Sem. Univ. Hamburg 19 (1955), 264-268. MR 16, 889. MR 0068544 (16:899e)
  • [10] J. Mack, S. A. Morris and E. T. Ordman, Free topological groups and the projective dimension of a locally compact Abelian group, Proc. Amer. Math. Soc. 40 (1973), 303-308. MR 47 #8755. MR 0320216 (47:8755)
  • [11] B. L. Madison, Congruences in topological semigroups, Proc. Second Florida Sympos. on Automata and Semigroups, Univ. of Florida, 1971.
  • [12] S. A. Morris, Free compact Abelian groups, Mat. Časopis Sloven. Akad. Vied. 22 (1972), 141-147. MR 47 #2002. MR 0313448 (47:2002)
  • [13] P. Nickolas, Subgroups of the free topological group on [0, 1], J. London Math. Soc. (2) 12 (1976), 199-205. MR 0457616 (56:15821)
  • [14] N. Noble, k-groups and duality, Trans. Amer. Math. Soc. 151 (1970), 551-561. MR 42 #4963. MR 0270070 (42:4963)
  • [15] E. H. Spanier, Algebraic topology, McGraw-Hill, New York, 1966. MR 35 #1007. MR 0210112 (35:1007)
  • [16] N. Th. Varopoulos, Studies in harmonic analysis, Proc. Cambridge Philos. Soc. 60 (1964), 465-516. MR 29 #1284. MR 0163985 (29:1284)
  • [17] R. Venkataraman, Extensions of Pontrjagin duality, Math. Z. 143 (1975), 105-112. MR 0374335 (51:10535)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 22A05

Retrieve articles in all journals with MSC: 22A05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1977-0486276-0
Keywords: Dual group, Pontrjagin duality theorem, reflexive, free Abelian topological group, $ {k_\omega }$-space
Article copyright: © Copyright 1977 American Mathematical Society

American Mathematical Society