Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A remark on the direct method of the calculus of variations


Author: J. P. Penot
Journal: Proc. Amer. Math. Soc. 67 (1977), 135-141
MSC: Primary 49F22; Secondary 49A50
DOI: https://doi.org/10.1090/S0002-9939-1977-0464022-4
MathSciNet review: 0464022
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This note deals with the problem of minimizing a real-valued function f on a weakly closed subset of a reflexive Banach space. We use a mild monotonicity assumption introduced by P. Hess [11] on the derivative f' of f to get the weak lower semicontinuity of f. We show that one can dispense with any continuity assumption on f', so that we get a true generalization of F. E. Browder's results [4]. The relevance of the monotonicity property to the calculus of variations is shown by an example.


References [Enhancements On Off] (What's this?)

  • [1] L. D. Berkovitz, Lower semi-continuity of integral functional, Trans. Amer. Math. Soc. 192 (1974), 51-57. MR 0348582 (50:1079)
  • [2] H. Brezis, Equations et inequations non-linéaires dans les espaces vectoriels en dualité, Ann. Inst. Fourier (Grenoble) 18 (1968), 115-175. MR 0270222 (42:5113)
  • [3] F. E. Browder, Nonlinear monotone and accretive operators in Banach spaces, Proc. Nat. Acad. Sci. U. S. A. 61 (1968), 388-393. MR 0290205 (44:7389)
  • [4] -, Pseudo-monotone operators and the direct method of the calculus of variations, Arch. Rational Mech. Anal. 38 (1970), 268-277. MR 0266013 (42:922)
  • [5] -, Existence theorems for nonlinear partial differential equations, Proc. Sympos. Pure Math., vol. 16, Amer. Math. Soc., Providence, R. I., 1970, pp. 1-60. MR 42 #4855. MR 0269962 (42:4855)
  • [6] -, Nonlinear operators and nonlinear equations of evolution in Banach spaces, Proc. Sympos. Pure Math., vol. 18, part 2, Amer. Math. Soc., Providence, R. I., 1976. MR 0405188 (53:8982)
  • [7] F. E. Browder and P. Hess, Nonlinear mappings of monotone type in Banach spaces, J. Functional Analysis 11 (1972), 251-294. MR 0365242 (51:1495)
  • [8] F. H. Clarke, Generalized gradients and applications, Trans. Amer. Math. Soc. 205 (1975), 247-262. MR 0367131 (51:3373)
  • [9] J. Dieudonné, Foundations of modern analysis, Academic Press, New York and London, 1960. MR 0120319 (22:11074)
  • [10] P. M. Fitzpatrick, P. Hess and T. Kato, Local boundedness of monotone-type operators, Proc. Japan Acad. 48 (1972), 275-277. MR 0312336 (47:898)
  • [11] P. Hess, A variational approach to a class of nonlinear eigenvalue problems, Proc. Amer. Math. Soc. 29 (1971), 272-276. MR 0284890 (44:2114)
  • [12] R. Janin, Sur la dualité et la sensibilité dans les problèmes de programmation mathématique, Thèse, Paris, 1974.
  • [13] G. Lebourg, Valeur moyenne pour gradient généralisé, C R. Acad. Sci. Paris Sér. A 281 (1975), A795-A797. MR 0388097 (52:8934)
  • [14] C. Olech, Weak lower semi-continuity of integral functionals, J. Optimization Theory and Appl. 19 (1976), 3-16. MR 0428161 (55:1188)
  • [15] J. P. Penot, Calcul sous-différentiel et optimisation, J. Functional Analysis (to appear). MR 0649629 (58:31202)
  • [16] -, Sous-différentiels de fonctions numériques non convexes, C. R. Acad. Sci. Paris 278 (1974), 1553-1555. MR 0352978 (50:5464)
  • [17] -, Règles de calcul sous-différentiel (to appear).
  • [18] T. Rockafellar, Local boundedness of nonlinear maximal monotone operators, Michigan Math. J. 16 (1969), 397-407. MR 40 #6229. MR 0253014 (40:6229)
  • [19] L. Thibault, Quelques propriétés des sous-différentiels de fonctions réelles localement lipschitziennes définies sur un espace de Banach séparable, C. R. Acad. Sci. Paris Sér. A 282 (1976), A507-A510. MR 0428354 (55:1378)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 49F22, 49A50

Retrieve articles in all journals with MSC: 49F22, 49A50


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1977-0464022-4
Keywords: Variational problem, direct method, weak lower semicontinuity, operator of monotone type, pseudomonotone operator, pertinent operator, nonlinear eigenvalue problem, multiple integral functional
Article copyright: © Copyright 1977 American Mathematical Society

American Mathematical Society