A type of nearest point set in a complete -group

Author:
Michael Keisler

Journal:
Proc. Amer. Math. Soc. **67** (1977), 189-197

MSC:
Primary 06A55

DOI:
https://doi.org/10.1090/S0002-9939-1977-0463071-X

MathSciNet review:
0463071

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A theorem by W. D. L. Appling (Riv. Mat. Univ. Parma, (3) **2** (1973), 251-276) demonstrates that a *C*-set is a nearest point set in with respect to the variation norm. This paper demonstrates an analogous result for a generalized form of *C*-set in a complete *l*-group with distance with respect to the norm being replaced by a stronger property definable in a complete *l*-group (distance between elements *x* and *y* of a complete *l*-group *G* is taken to be ). The result is then shown to be a characterization of sets possessing the stronger property in the case of a complete vector lattice, but not a characterization in the case of a complete *l*-group.

**[1]**William D. L. Appling,*Set functions and an extremal problem in absolute continuity*, Rend. Circ. Mat. Palermo (2)**14**(1965), 257–266. MR**0210839**, https://doi.org/10.1007/BF02844028**[2]**William D. L. Appling,*A generalization of absolute continuity and of an analogue of the Lebesgue decomposition theorem*, Riv. Mat. Univ. Parma (3)**2**(1973), 251–276. MR**0401998****[3]**Garrett Birkhoff,*Lattice theory*, Third edition. American Mathematical Society Colloquium Publications, Vol. XXV, American Mathematical Society, Providence, R.I., 1967. MR**0227053****[4]**S. Bochner and R. S. Phillips,*Additive set functions and vector lattices*, Ann. of Math. (2)**42**(1941), 316–324. MR**0004079**, https://doi.org/10.2307/1969000**[5]**Shizuo Kakutani,*Concrete representation of abstract (𝐿)-spaces and the mean ergodic theorem*, Ann. of Math. (2)**42**(1941), 523–537. MR**0004095**, https://doi.org/10.2307/1968915**[6]**L. V. Kantorovič, B. Z. Vulih, and A. G. Pinsker,*Partially ordered groups and partially ordered linear spaces*, Amer. Math. Soc. Transl. (2)**27**(1963), 51–124. MR**0151532****[7]**A. G. Pinsker,*On the extension of partially ordered spaces*, Dokl. Akad. Nauk SSSR**21**(1938), 6-10. (Russian)**[8]**-,*On some properties of extended K-spaces*, Dokl. Akad. Nauk SSSR**22**(1939), 220-224. (Russian)

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
06A55

Retrieve articles in all journals with MSC: 06A55

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1977-0463071-X

Keywords:
Complete *l*-group,
complete vector lattice,
complex,
*l*-nearest point set,
normal subgroup,
projection operator

Article copyright:
© Copyright 1977
American Mathematical Society