Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Maximal subalgebras of central separable algebras


Author: M. L. Racine
Journal: Proc. Amer. Math. Soc. 68 (1978), 11-15
MSC: Primary 16A16
DOI: https://doi.org/10.1090/S0002-9939-1978-0453796-5
MathSciNet review: 0453796
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let A be a central separable algebra over a commutative ring R. A proper R-subalgebra of A is said to be maximal if it is maximal with respect to inclusion.

Theorem. Any proper subalgebra of A is contained in a maximal one. Any maximal subalgebra B of A contains a maximal ideal $ \mathfrak{m}A$ of A, $ \mathfrak{m}$ a maximal ideal of R, and $ B/\mathfrak{m}A$ is a maximal subalgebra of the central simple $ R/\mathfrak{m}$ algebra $ A/\mathfrak{m}A$.

More intrinsic characterizations are obtained when R is a Dedekind domain.


References [Enhancements On Off] (What's this?)

  • [1] G. Azumaya, On maximally central algebras, Nagoya Math. J. 2 (1951), 119-150. MR 0040287 (12:669g)
  • [2] F. De Meyer and E. Ingraham, Separable algebras over commutative rings, Lecture Notes in Math., vol. 181, Springer-Verlag, Berlin and New York, 1971. MR 0280479 (43:6199)
  • [3] E. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Mat. Sb. 30 (72) (1952), 349-462; English Transl., Amer. Math. Soc. Transl. 6 (1957), 111-244. MR 0047629 (13:904c)
  • [4] -, Maximal subgroups of the classical groups, Trudy Moskov. Mat. Obšč. 1 (1952), 39-166; English transl., Amer. Math. Soc. Transl. 6 (1957), 245-378. MR 0049903 (14:244d)
  • [5] O. T. O'Meara, Introduction to quadratic forms, Springer-Verlag, Heidelberg, 1963. MR 0152507 (27:2485)
  • [6] M. Orzech and C. Small, The Brauer group of commutative rings, Marcel Dekker, New York, 1975. MR 0457422 (56:15627)
  • [7] M. L. Racine, On maximal subalgebras, J. Algebra 30 (1974), 155-180. MR 0349771 (50:2264)
  • [8] -, Maximal subalgebras of exceptional Jordan algebras, J. Algebra 46 (1977), 12-21. MR 0450356 (56:8651)
  • [9] K. W. Roggenkamp and V. Huber-Dyson, Lattices over orders I, Lecture Notes in Math., vol. 115, Springer-Verlag, Berlin and New York, 1970. MR 0283013 (44:247a)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 16A16

Retrieve articles in all journals with MSC: 16A16


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1978-0453796-5
Keywords: Central separable algebra, maximal subalgebra, Dedekind domain
Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society