Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

$ {\rm CR}$ submanifolds of a Kaehler manifold. I


Author: Aurel Bejancu
Journal: Proc. Amer. Math. Soc. 69 (1978), 135-142
MSC: Primary 53C55; Secondary 32C05
DOI: https://doi.org/10.1090/S0002-9939-1978-0467630-0
MathSciNet review: 0467630
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The differential geometry of CR submanifolds of a Kaehler manifold is studied. Theorems about totally geodesic CR submanifolds and totally umbilical CR submanifolds are given.


References [Enhancements On Off] (What's this?)

  • [1] B. Y. Chen and K. Ogiue, On totally real submanifolds, Trans. Amer. Math. Soc. 193 (1973), 257-266. MR 49 # 11433. MR 0346708 (49:11433)
  • [2] S. Kobayashi and K. Nomizu, Foundations of differential geometry. I, Interscience, New York, 1963. MR 27 #2945. MR 0152974 (27:2945)
  • [3] G. D. Ludden, M. Okumura and K. Yano, Totally real submanifolds of complex manifolds, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 58 (1975), 346-353. MR 0418001 (54:6046)
  • [4] K. Ogiue, Differential geometry of Kaehler submanifolds, Advances in Math. 13 (1974), 73-114. MR 49 #11444. MR 0346719 (49:11444)
  • [5] K. Yano, On a structure defined by a tensor field f of type (1.1) satisfying $ {f^3} + f = 0$, Tensor 14 (1963), 99-109. MR 28 #2513. MR 0159296 (28:2513)
  • [6] K. Yano and M. Kon, Totally real submanifolds of complex space forms, Tôhoku Math. J. 28 (1976), 215-225. MR 0425867 (54:13817)
  • [7] -, Totally real submanifolds of complex space forms. II, Kōdai Math. Sem. Rep. 27 (1976), 385-399. MR 0425868 (54:13818)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 53C55, 32C05

Retrieve articles in all journals with MSC: 53C55, 32C05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1978-0467630-0
Keywords: CR submanifolds, sectional curvature, scalar curvature, Ricci tensor, totally geodesic and totally umbilical CR submanifolds
Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society