Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Nice sets of multi-indices


Authors: W. R. Madych and P. Szeptycki
Journal: Proc. Amer. Math. Soc. 69 (1978), 70-72
MSC: Primary 42A16
DOI: https://doi.org/10.1090/S0002-9939-1978-0481857-3
MathSciNet review: 0481857
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Finite sets, A, of n-tuples for which $ {({\Sigma _{\alpha \in A}}(\prod _{j = 1}^n\vert{x_j}{\vert^{{\alpha _j}}}))^{ - p}},p > 0$, is integrable over $ {R^n}$ are given a simple characterization. Applications to certain Fourier multiplier theorems are mentioned.


References [Enhancements On Off] (What's this?)

  • [1] A. P. Calderon and A. Torchinsky, Parabolic maximal functions associated with a distribution. I, Advances in Math. 16 (1975), 1-64; II. (to appear). MR 0417687 (54:5736)
  • [2] L. Hormander, Estimates for translation invariant operators in $ {L^p}$ spaces, Acta Math. 104 (1960), 93-140. MR 0121655 (22:12389)
  • [3] V. M. Kagan, On the boundedness of pseudo-differential operators in $ {L^p}$, Izv. Vysš. Učebn. Zaved. Matematika 73 (1968), 35-44. (Russian)
  • [4] W. Littman, Multipliers in $ {L^p}$ and interpolation, Bull. Amer. Math. Soc. 71 (1965), 764-766. MR 0179544 (31:3792)
  • [5] W. R. Madych, Iterated Littlewood-Paley functions and a multiplier theorem, Proc. Amer. Math. Soc. 45 (1974), 325-331. MR 0355475 (50:7949)
  • [6] N. M. Riviere, Singular integrals and multiplier operators, Ark. Mat. 9 (1971), 243-278. MR 0440268 (55:13146)
  • [7] P. Szeptycki, A remark on Miklin's theorem about multipliers of Fourier transforms, Notices Amer. Math. Soc. 11 (1964), 558.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 42A16

Retrieve articles in all journals with MSC: 42A16


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1978-0481857-3
Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society