Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Vector-valued continuous functions with strict topologies and angelic topological spaces


Author: Surjit Singh Khurana
Journal: Proc. Amer. Math. Soc. 69 (1978), 34-36
MSC: Primary 46E40
DOI: https://doi.org/10.1090/S0002-9939-1978-0493313-7
MathSciNet review: 0493313
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is proved that if X is a metric space, E a Banach space containing a $ \sigma $-weakly-compact dense subset, then the space $ ({M_\tau }(X,E'),\sigma ({M_\tau }(X,E'),{C_b}(X,E)))$ is angelic, $ {C_b}(X,E)$ being all bounded continuous functions from X into E and $ {M_\tau }(X,E')$ the dual of $ {C_b}(X,E)$ with the strict topology $ \beta $.


References [Enhancements On Off] (What's this?)

  • [1] R. A. Fontenot, Strict topologies for vector-valued functions, Canad. J. Math. 26 (1974), 841-853. MR 0348463 (50:961)
  • [2] S. S. Khurana, Topologies on spaces of vector-valued continuous functions, Trans. Amer. Math. Soc. (to appear). MR 492297 (81f:46053)
  • [3] S. S. Khurana and S. A. Choo, Strict topology and P-spaces, Proc. Amer. Math. Soc. 61 (1976), 280-284. MR 0425603 (54:13557)
  • [4] J. D. Pryce, A device of R.J. Whitley applied to pointwise compactness in spaces of continuous functions, Proc. London Math. Soc. 23 (1971), 532-546. MR 0296670 (45:5729)
  • [5] H. H. Schaefer, Topological vector spaces, Macmillan, New York, 1966. MR 0193469 (33:1689)
  • [6] J. Schmets and J. Zafarani, Topologie stricte faible et mesures discrètes, Bull. Soc. Roy. Liège 43 (1974), 405-418. MR 0365105 (51:1358)
  • [7] F. D. Sentilles, Bounded continuous functions on completely regular spaces, Trans. Amer. Math. Soc. 168 (1972), 311-336. MR 0295065 (45:4133)
  • [8] F. D. Sentilles and R. F. Wheeler, Linear functionals and partition of unity in $ {C_b}(X)$, Duke Math. J. 41 (1974), 483-496. MR 0358314 (50:10780)
  • [9] R. F. Wheeler, The strict topology, separable measures and paracompactness, Pacific J. Math. 47 (1973), 287-302. MR 0341047 (49:5797)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46E40

Retrieve articles in all journals with MSC: 46E40


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1978-0493313-7
Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society