Vector-valued continuous functions with strict topologies and angelic topological spaces

Author:
Surjit Singh Khurana

Journal:
Proc. Amer. Math. Soc. **69** (1978), 34-36

MSC:
Primary 46E40

DOI:
https://doi.org/10.1090/S0002-9939-1978-0493313-7

MathSciNet review:
0493313

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is proved that if *X* is a metric space, *E* a Banach space containing a -weakly-compact dense subset, then the space is angelic, being all bounded continuous functions from *X* into *E* and the dual of with the strict topology .

**[1]**R. A. Fontenot,*Strict topologies for vector-valued functions*, Canad. J. Math.**26**(1974), 841-853. MR**0348463 (50:961)****[2]**S. S. Khurana,*Topologies on spaces of vector-valued continuous functions*, Trans. Amer. Math. Soc. (to appear). MR**492297 (81f:46053)****[3]**S. S. Khurana and S. A. Choo,*Strict topology and P-spaces*, Proc. Amer. Math. Soc.**61**(1976), 280-284. MR**0425603 (54:13557)****[4]**J. D. Pryce,*A device of R.J. Whitley applied to pointwise compactness in spaces of continuous functions*, Proc. London Math. Soc.**23**(1971), 532-546. MR**0296670 (45:5729)****[5]**H. H. Schaefer,*Topological vector spaces*, Macmillan, New York, 1966. MR**0193469 (33:1689)****[6]**J. Schmets and J. Zafarani,*Topologie stricte faible et mesures discrètes*, Bull. Soc. Roy. Liège**43**(1974), 405-418. MR**0365105 (51:1358)****[7]**F. D. Sentilles,*Bounded continuous functions on completely regular spaces*, Trans. Amer. Math. Soc.**168**(1972), 311-336. MR**0295065 (45:4133)****[8]**F. D. Sentilles and R. F. Wheeler,*Linear functionals and partition of unity in*, Duke Math. J.**41**(1974), 483-496. MR**0358314 (50:10780)****[9]**R. F. Wheeler,*The strict topology, separable measures and paracompactness*, Pacific J. Math.**47**(1973), 287-302. MR**0341047 (49:5797)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
46E40

Retrieve articles in all journals with MSC: 46E40

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1978-0493313-7

Article copyright:
© Copyright 1978
American Mathematical Society