Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



The Fredholm radius of a bundle of closed linear operators

Author: E.-O. Liebetrau
Journal: Proc. Amer. Math. Soc. 70 (1978), 67-71
MSC: Primary 47B30
MathSciNet review: 0477858
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Given a bundle of linear operators $ T - \lambda S$, where T is closed and S is bounded, a sequence $ \{ {\delta _m}(T:S)\} $ of extended real numbers is defined. If T is a Fredholm operator, the limit $ {\lim \delta _m}{(T:S)^{1/m}}$ exists and is equal to the supremum of all $ r > 0$ such that $ T - \lambda S$ is a Fredholm operator for $ \vert\lambda \vert < r$.

References [Enhancements On Off] (What's this?)

  • [1] H. Bart and D. C. Lay, The stability radius of a bundle of closed linear operators, Univ. of Maryland, TR-76-11 (1976), 1-23.
  • [2] K.-H. Förster and M. A. Kaashoek, The asymptotic behaviour of the reduced minimum modulus of a Fredholm operator, Proc. Amer. Math. Soc. 49 (1975), 123-131. MR 0372660 (51:8867)
  • [3] T. Kato, Perturbation theory for nullity, deficiency and other related quantities of linear operators, J. Analyse Math. 6 (1958), 261-322. MR 0107819 (21:6541)
  • [4] A. Lebow and M. Schechter, Semigroups of operators and measures of noncompactness, J. Functional Analysis 7 (1971), 1-26. MR 0273422 (42:8301)
  • [5] E.-O. Liebetrau, Über die Fredholmmenge linearer Operatoren, Dissertation, Dortmund, 1972.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47B30

Retrieve articles in all journals with MSC: 47B30

Additional Information

Keywords: Fredholm operators, perturbation theory
Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society