Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

$ K({\bf Z}/2)$ as a Thom spectrum


Author: Stewart Priddy
Journal: Proc. Amer. Math. Soc. 70 (1978), 207-208
MSC: Primary 55B20
DOI: https://doi.org/10.1090/S0002-9939-1978-0474271-8
MathSciNet review: 0474271
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Dyer-Lashof operations are used to give a simple proof that $ K({\mathbf{Z}}/2)$ is a Thom spectrum.


References [Enhancements On Off] (What's this?)

  • [1] S. O. Kochman, Homology of the classical groups over the Dyer-Lashof algebra, Trans. Amer. Math. Soc. 185 (1973), 83-136. MR 0331386 (48:9719)
  • [2] I. Madsen and R. J. Milgram, On spherical fibre bundles and their PL reductions, London Math. Soc. Lecture Notes Series, vol. 11, 1974, pp. 43-59. MR 0343286 (49:8028)
  • [3] M. Mahowald, A new infinite family in $ _2\pi _ \ast ^s$, Topology 16 (1977), 249-256. MR 0445498 (56:3838)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 55B20

Retrieve articles in all journals with MSC: 55B20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1978-0474271-8
Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society