Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Unter- und Oberfunktionen und Differentialungleichungen zweiter Ordnung in normierten Räumen


Author: Roland Lemmert
Journal: Proc. Amer. Math. Soc. 70 (1978), 173-180
MSC: Primary 35B45; Secondary 34G20
DOI: https://doi.org/10.1090/S0002-9939-1978-0492069-1
MathSciNet review: 492069
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: An invariance theorem for a cone in a normed linear space with respect to solutions of general elliptic inequalities is obtained, which includes and generalizes monotonicity theorems for systems of second order ordinary, parabolic and elliptic differential inequalities.


References [Enhancements On Off] (What's this?)

  • [1] S. R. Bernfeld und V. Lakshmikantham, An introduction to nonlinear boundary value problems, Academic Press, New York, 1974. MR 0445048 (56:3393)
  • [2] L. Fountain und L. A. Jackson, A generalized solution of the boundary value problem for $ y'' = f(x,y,y')$, Pacific J. Math. 12 (1962), 1251-1272. MR 0163002 (29:305)
  • [3] K. H. Heimes, Boundary value problems for ordinary nonlinear second order systems, J. Differential Equations 2 (1966), 449-463. MR 0204756 (34:4594)
  • [4] R. Lemmert, Über die Invarianz einer konvexen Menge in bezug auf Systeme von gewöhnlichen, parabolischen und elliptischen Differentialgleichungen, Math. Ann. 230 (1977), 49-56. MR 0492774 (58:11841)
  • [5] -, Über die Invarianz konvexer Teilmengen eines normierten Raumes in bezug auf elliptische Differentialgleichungen, Comm. Partial Differential Equations (erscheint in).
  • [6] R. Lemmert und P. Volkmann, Ein Invarianzsatz für Systeme von nichtlinearen elliptischen Differentialgleichungen zweiter Ordnung (Manuskript).
  • [7] -, Randwertprobleme für gewöhnliche Differentialgleichungen in konvexen Teilmengen eines Banachraumes, J. Differential Equations 27 (1978), 138-143. MR 0473388 (57:13055)
  • [8] M. H. Protter und H. F. Weinberger, Maximum principles in differential equations, Prentice-Hall, Englewood Cliffs, N.J., 1967. MR 0219861 (36:2935)
  • [9] R. Redheffer und W. Walter, Flow-invariant sets and differential inequalities in normed spaces, Applicable Analysis 5 (1975), 149-161. MR 0470401 (57:10155)
  • [10] -, Invariant sets for systems of partial differential equations. I. Parabolic equations, Arch. Rational Mech. Anal.
  • [11] R. C. Thompson, Differential inequalities for infinite second order systems and an application to the method of lines, J. Differential Equations 17 (1975), 421-434. MR 0361344 (50:13789)
  • [12] -, Convergence and error estimate for the method of lines for certain nonlinear elliptic and elliptic-parabolic equations, SIAM J. Numer. Anal. 13 (1976), 27-43. MR 0431733 (55:4728)
  • [13] P. Volkmann, Über die Invarianz konvexer Mengen und Differentialungleichungen in einem normierten Raume, Math. Ann. 203 (1973), 201-210. MR 0322305 (48:667)
  • [14] W. Walter, Differential and integral inequalities, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 55, Springer-Verlag, Berlin and New York, 1970 (Übersetzung aus dem Deutschen). MR 0271508 (42:6391)
  • [15] H. F. Weinberger, Invariant sets for weakly coupled parabolic and elliptic systems, Rend. Mat. 8 (1975), 295-310. MR 0397126 (53:986)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 35B45, 34G20

Retrieve articles in all journals with MSC: 35B45, 34G20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1978-0492069-1
Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society