Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Lie triple derivations of von Neumann algebras


Author: C. Robert Miers
Journal: Proc. Amer. Math. Soc. 71 (1978), 57-61
MSC: Primary 46L10; Secondary 17B65
MathSciNet review: 0487480
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A Lie triple derivation of an associative algebra M is a linear map $ L:M \to M$ such that

$\displaystyle L[[X,Y],Z] = [ {[L(X),Y],Z} ] + [ {[X,L(Y)],Z} ] + [ {[X,Y],L(Z)} ]$

for all $ X,Y,Z \in M$. (Here $ [X,Y] = XY - YX$ and [M, M] is the linear subspace of M generated by such terms.) We show that if M is a von Neumann algebra with no central abelian summands then there exists an operator $ A \in M$ such that $ L(X) = [A,X] + \lambda (X)$ where $ \lambda :M \to {Z_M}$ is a linear map which annihilates brackets of operators in M.

References [Enhancements On Off] (What's this?)

  • [1] J. Dixmier, Les algèbres d'operateurs dans l'espace Hilbertien, Cahiers Scientifiques, fasc. 25, Gauthier-Villars, Paris, 1969.
  • [2] Richard A. Howland, Lie isomorphisms of derived rings of simple rings, Trans. Amer. Math. Soc. 145 (1969), 383-396. MR 0252441 (40:5661)
  • [3] N. Jacobsen and C. E. Rickart, Jordan homomorphisms of rings, Trans. Amer. Math. Soc. 69 (1950), 479-502. MR 0038335 (12:387h)
  • [4] W. G. Lister, A structure theory of Lie triple systems, Trans. Amer. Math. Soc. 72 (1952), 217-242. MR 0045702 (13:619d)
  • [5] Wallace S. Martindale III, Lie derivations of primitive rings, Michigan Math. J. 11 (1964), 183-187. MR 0166234 (29:3511)
  • [6] C. Robert Miers, Derived ring isomorphisms of von Neumann algebras, Canad. J. Math. 25 (1973), 1254-1268. MR 0336365 (49:1140)
  • [7] -, Lie derivations of von Neumann algebras, Duke Math. J. 40 (1973), 403-409. MR 0315466 (47:4015)
  • [8] -, $ Li{e^ \ast }$-triple homomorphisms into von Neumann algebras, Proc. Amer. Math. Soc. 58 (1976), 169-172. MR 0410406 (53:14156)
  • [9] C. R. Putnam, Commutation properties of Hilbert space operators, Springer-Verlag, New York, 1967. MR 0217618 (36:707)
  • [10] S. Sakai, Derivations of $ {W^ \ast }$-algebras, Ann. of Math. (2) 83 (1966), 273-279. MR 0193528 (33:1748)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46L10, 17B65

Retrieve articles in all journals with MSC: 46L10, 17B65


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1978-0487480-9
Keywords: Lie triple derivation, von Neumann algebra
Article copyright: © Copyright 1978 American Mathematical Society