Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)


The binary digits of a power

Author: Kenneth B. Stolarsky
Journal: Proc. Amer. Math. Soc. 71 (1978), 1-5
MSC: Primary 10A40
MathSciNet review: 495823
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ B(m)$ denote the number of ones in the binary expansion of the integer $ m \geqslant 1$ and let $ {r_h}(m) = B({m^h})/B(m)$ where h is a positive integer. The maximal order of magnitude of $ {r_h}(m)$ is $ c(h){(\log m)^{(h - 1)/h}}$ where $ c(h) > 0$ depends only on h. That this is best possible follows from the Bose-Chowla theorem. The minimal order of magnitude of $ {r_2}(m)$ is at most $ c{(\log \log m)^2}/\log m$ where $ c > 0$ is an absolute constant.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 10A40

Retrieve articles in all journals with MSC: 10A40

Additional Information

PII: S 0002-9939(1978)0495823-5
Article copyright: © Copyright 1978 American Mathematical Society

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia