Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

The binary digits of a power


Author: Kenneth B. Stolarsky
Journal: Proc. Amer. Math. Soc. 71 (1978), 1-5
MSC: Primary 10A40
MathSciNet review: 495823
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ B(m)$ denote the number of ones in the binary expansion of the integer $ m \geqslant 1$ and let $ {r_h}(m) = B({m^h})/B(m)$ where h is a positive integer. The maximal order of magnitude of $ {r_h}(m)$ is $ c(h){(\log m)^{(h - 1)/h}}$ where $ c(h) > 0$ depends only on h. That this is best possible follows from the Bose-Chowla theorem. The minimal order of magnitude of $ {r_2}(m)$ is at most $ c{(\log \log m)^2}/\log m$ where $ c > 0$ is an absolute constant.


References [Enhancements On Off] (What's this?)

  • [1] A. S. Besicovitch, The asymptotic distribution of the numerals in the decimal representation of the squares of the natural numbers, Math. Z. 39 (1934), 146-156. MR 1545494
  • [2] R. C. Bose and S. Chowla, Theorems in the additive theory of numbers, Comm. Math. Helv. 37 (1962/63), 141-147. MR 0144877 (26:2418)
  • [3] H. Davenport and P. Erdös, Note on normal decimals, Canad. J. Math. 4 (1952), 58-63. MR 0047084 (13:825g)
  • [4] H. Delange, Sur la fonction sommatoire de la fonction ``somme des chiffres", Enseignement Math. (2) 21 (1975), 31-17. MR 0379414 (52:319)
  • [5] M. P. Drazin and J. S. Griffith, On the decimal representation of integers, Proc. Cambridge Philos. Soc. (4) 48 (1952), 555-565. MR 0049959 (14:253e)
  • [6] P. Erdös, On the irrationality of certain series, Nederl. Akad. Wetensch. Proc. Ser. A. 60 (1957), 212-219. MR 0086841 (19:252e)
  • [7] H. Halberstam and K. F. Roth, Sequences, vol. I, Clarendon Press, London, 1966. MR 0210679 (35:1565)
  • [8] I. Kátai and J. Mogyoródi, On the distribution of digits, Publ. Math. Debrecen 15 (1968), 57-68. MR 0236139 (38:4437)
  • [9] D. J. Newman and M. Slater, Binary digit distribution over naturally defined sequences, Trans. Amer. Math. Soc. 213 (1975), 71-78. MR 0384734 (52:5607)
  • [10] I. Shiokawa and S. Uchiyama, On some properties of the dyadic Champernowne numbers, Acta Math. Acad. Sci. Hungar. 26 (1975), 9-27. MR 0379419 (52:324)
  • [11] J. R. Samborski, Problem E2667, Amer. Math. Monthly 84 (1977), 567.
  • [12] K. B. Stolarsky, Power and exponential sums of digital sums related to binomial coefficient parity, SIAM J. Appl. Math. 32 (1977), 717-730. MR 0439735 (55:12621)
  • [13] K. B. Stolarky and J. B. Muskat, The number of binary digits in multiples of n (in prep.).
  • [14] K. B. Stolarsky, Integers whose multiples have anomalous digital frequencies, Acta Arith. (to appear). MR 604228 (82h:10012)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 10A40

Retrieve articles in all journals with MSC: 10A40


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1978-0495823-5
Article copyright: © Copyright 1978 American Mathematical Society