Fibered stable compacta have finite homotopy type

Author:
Ross Geoghegan

Journal:
Proc. Amer. Math. Soc. **71** (1978), 123-129

MSC:
Primary 55D15; Secondary 57A65

DOI:
https://doi.org/10.1090/S0002-9939-1978-0515418-4

Erratum:
Proc. Amer. Math. Soc. **74** (1979), 391.

MathSciNet review:
0515418

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is proved that a fibered compact metric space having the shape of a CW complex has the homotopy type of that complex, and that its Wall obstruction to finiteness is zero.

**[1]**M. Brown,*Some applications of an approximation theorem for inverse limits*, Proc. Amer. Math. Soc.**11**(1960), 478-483. MR**0115157 (22:5959)****[2]**T. A. Chapman,*Lectures on Hilbert cube manifolds*, CBMS Regional Conf. Ser. in Math., vol. 28, Amer. Math. Soc., Providence, R.I., 1976. MR**0423357 (54:11336)****[3]**T. tom Dieck,*Partitions of unity in homotopy theory*, Compositio Math.**23**(1971), 159-167. MR**0293625 (45:2702)****[4]**D. A. Edwards and R. Geoghegan,*Shapes of complexes, ends of manifolds, homotopy limits and the Wall obstruction*, Ann. of Math. (2)**101**(1975), 521-535; correction**104**(1976), p. 389. MR**0375330 (51:11525)****[5]**-,*The stability problem in shape and a Whitehead theorem in pro-homotopy*, Trans. Amer. Math. Soc.**214**(1975), 261-277. MR**0413095 (54:1216)****[6]**D. A. Edwards and H. M. Hastings,*Čech and Steenrod homotopy theories with applications to geometric topology*, Lecture Notes in Math., vol. 542, Springer-Verlag, Berlin and New York, 1976. MR**0428322 (55:1347)****[7]**R. Geoghegan,*Compacta with the homotopy type of finite complexes*, (Proc. Georgia Conf. on Geometric Topology, 1977), Academic Press, New York (to appear). MR**537753 (81a:55018)****[8]**R. Geoghegan and R. C. Lacher,*Compacta with the shape of finite complexes*, Fund. Math.**92**(1976), 25-27. MR**0418029 (54:6073)****[9]**H. M. Hastings,*Fibrations of compactly generated spaces*, Michigan Math. J.**21**(1974), 243-251. MR**0367985 (51:4227)****[10]**S. Mardešić and J. Segal,*Shapes of compacta and ANR-systems*, Fund. Math.**72**(1971), 41-59. MR**0298634 (45:7686)****[11]**M. Mather,*Counting homotopy types of manifolds*, Topology**4**(1965), 93-94. MR**0176470 (31:742)****[12]**J. Milnor,*On spaces having the homotopy type of CW complexes*, Trans. Amer. Math. Soc.**90**(1959), 272-280. MR**0100267 (20:6700)****[13]**K. Morita,*On shapes of topological spaces*, Fund. Math.**86**(1975), 251-259. MR**0388385 (52:9222)****[14]**D. G. Quillen,*Homotopical algebra*, Lecture Notes in Math., vol. 43, Springer-Verlag, Berlin and New York, 1967. MR**0223432 (36:6480)****[15]**L. C. Siebenmann, L. Guillou and H. Hähl,*Les voisinages réguliers ouverts*, Ann. Sci. Ecole Norm. Sup. (4)**6**(1973), 253-293. MR**0331399 (48:9732)****[16]**E. H. Spanier,*Algebraic topology*, McGraw-Hill, New York, 1966. MR**0210112 (35:1007)****[17]**A. Stróm,*Note on cofibrations*, Math. Scand.**19**(1966), 11-14. MR**0211403 (35:2284)****[18]**C. T. C. Wall,*Finiteness conditions for CW-complexes*, Ann. of Math. (2)**81**(1965), 55-69. MR**0171284 (30:1515)****[19]**J. E. West,*Mapping Hilbert cube manifolds to ANRs*, Ann. of Math. (2)**106**(1977) (to appear). MR**0451247 (56:9534)****[20]**J. H. C. Whitehead,*A certain exact sequence*, Ann. of Math. (2)**52**(1950), 51-110. MR**0035997 (12:43c)****[21]**R. Geoghegan,*The inverse limit of homotopy equivalences between towers of fibrations is a homotopy equivalence-a simple proof*(submitted).

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
55D15,
57A65

Retrieve articles in all journals with MSC: 55D15, 57A65

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1978-0515418-4

Keywords:
Homotopy type of a CW complex,
shape,
Wall obstruction,
sequence of fibrations

Article copyright:
© Copyright 1978
American Mathematical Society