On the Alexander polynomials of certain three-component links
Author:
Mark E. Kidwell
Journal:
Proc. Amer. Math. Soc. 71 (1978), 351-354
MSC:
Primary 55A25
DOI:
https://doi.org/10.1090/S0002-9939-1978-0482737-X
MathSciNet review:
0482737
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: Let L be a three-component link all of whose linking numbers are zero. Write the Alexander polynomial of L as . Then the integer
is a perfect square.
- [1] E. Artin, Geometric algebra, Tracts in Math., No. 3, Interscience, London, 1957. MR 0082463 (18:553e)
- [2] J. S. Birman, Braids, links and mapping class groups, Ann. of Math. Studies, No. 82, Princeton Univ. Press, Princeton, N. J.; Univ. of Tokyo Press, Tokyo, 1975. MR 0375281 (51:11477)
- [3] R. H. Fox, Some problems in knot theory, Topology of 3-Manifolds and Related Topics (Proc. Univ. of Georgia Inst., 1961), M. K. Fort (Editor), Prentice-Hall, Englewood Cliffs, N. J., 1962, pp. 168-176. MR 0140100 (25:3523)
- [4]
F. Hosokawa,
-polynomials of links, Osaka Math. J. 10 (1958), 273-282. MR 0102820 (21:1606)
- [5] D. Rolfsen, Knots and links, Math. Lecture Ser., No. 7, Publish or Perish, Berkeley, Calif., 1976. MR 0515288 (58:24236)
- [6] H. Seifert, Über das Geschlecht von Knoten, Math. Ann. 110 (1934-1935), 571-592. MR 1512955
- [7] G. Torres, On the Alexander polynomial, Ann. of Math. (2) 57 (1953), 57-89. MR 0052104 (14:574a)
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 55A25
Retrieve articles in all journals with MSC: 55A25
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1978-0482737-X
Keywords:
Link,
Alexander polynomial,
Torres conditions,
Seifert surface,
Hosokawa matrix
Article copyright:
© Copyright 1978
American Mathematical Society