Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the Alexander polynomials of certain three-component links


Author: Mark E. Kidwell
Journal: Proc. Amer. Math. Soc. 71 (1978), 351-354
MSC: Primary 55A25
DOI: https://doi.org/10.1090/S0002-9939-1978-0482737-X
MathSciNet review: 0482737
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let L be a three-component link all of whose linking numbers are zero. Write the Alexander polynomial of L as $ \Delta (x,y,z) = (1 - x)(1 - y)(1 - z)f(x,y,z)$. Then the integer $ \vert f(1,1,1)\vert$ is a perfect square.


References [Enhancements On Off] (What's this?)

  • [1] E. Artin, Geometric algebra, Tracts in Math., No. 3, Interscience, London, 1957. MR 0082463 (18:553e)
  • [2] J. S. Birman, Braids, links and mapping class groups, Ann. of Math. Studies, No. 82, Princeton Univ. Press, Princeton, N. J.; Univ. of Tokyo Press, Tokyo, 1975. MR 0375281 (51:11477)
  • [3] R. H. Fox, Some problems in knot theory, Topology of 3-Manifolds and Related Topics (Proc. Univ. of Georgia Inst., 1961), M. K. Fort (Editor), Prentice-Hall, Englewood Cliffs, N. J., 1962, pp. 168-176. MR 0140100 (25:3523)
  • [4] F. Hosokawa, $ \nabla $-polynomials of links, Osaka Math. J. 10 (1958), 273-282. MR 0102820 (21:1606)
  • [5] D. Rolfsen, Knots and links, Math. Lecture Ser., No. 7, Publish or Perish, Berkeley, Calif., 1976. MR 0515288 (58:24236)
  • [6] H. Seifert, Über das Geschlecht von Knoten, Math. Ann. 110 (1934-1935), 571-592. MR 1512955
  • [7] G. Torres, On the Alexander polynomial, Ann. of Math. (2) 57 (1953), 57-89. MR 0052104 (14:574a)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 55A25

Retrieve articles in all journals with MSC: 55A25


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1978-0482737-X
Keywords: Link, Alexander polynomial, Torres conditions, Seifert surface, Hosokawa matrix
Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society