Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Growth rates for monotone subsequences


Authors: A. del Junco and J. Michael Steele
Journal: Proc. Amer. Math. Soc. 71 (1978), 179-182
MSC: Primary 10K05
MathSciNet review: 0491571
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The growth rate of the largest monotone subsequence of a uniformly distributed sequence is obtained. For $ {a_n} = n\alpha \bmod\; 1$ with $ \alpha $ algebraic irrational the exponent of growth is found to be precisely the same as for a random sequence.


References [Enhancements On Off] (What's this?)

  • [1] P. Erdös and G. Szekeres, A combinatorial problem in geometry, Compositio Math. 2 (1935), 463-470. MR 1556929
  • [2] J. M. Hammersley, A few seedlings of research, Proc. Sixth Berkeley Sympos. Math. Statist, and Probability, Univ. of California Press, Berkeley, Calif., 1972. MR 0405665 (53:9457)
  • [3] A. Ya. Khinchin, Continued fractions, Univ. of Chicago, Chicago, Ill., 1964. MR 0161833 (28:5037)
  • [4] H. Kesten, Comment to ``Subadditive ergodic theory'' by J. F. C. Kingman, Ann. Probability 1 (1973), 903. MR 0356192 (50:8663)
  • [5] L. Kuipers and H. Niederreiter, Uniform distribution of sequences, Wiley, Toronto, 1974. MR 0419394 (54:7415)
  • [6] B. F. Logan and L. A. Shepp, A variational problem for random Young tableaux, Advances in Math. 26 (1977), 206-222. MR 1417317 (98e:05108)
  • [7] H. Niederreiter, Metric theorems on the distributions of sequences, Proc. Sympos. Pure Math., vol. 24, Amer. Math. Soc., Providence, R. I., 1973, pp. 195-212. MR 0337872 (49:2641)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 10K05

Retrieve articles in all journals with MSC: 10K05


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1978-0491571-6
Keywords: Monotone subsequence, uniform distribution, algebraic irrationals, discrepancy
Article copyright: © Copyright 1978 American Mathematical Society