Growth rates for monotone subsequences

Authors:
A. del Junco and J. Michael Steele

Journal:
Proc. Amer. Math. Soc. **71** (1978), 179-182

MSC:
Primary 10K05

MathSciNet review:
0491571

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The growth rate of the largest monotone subsequence of a uniformly distributed sequence is obtained. For with algebraic irrational the exponent of growth is found to be precisely the same as for a random sequence.

**[1]**P. Erdös and G. Szekeres,*A combinatorial problem in geometry*, Compositio Math.**2**(1935), 463-470. MR**1556929****[2]**J. M. Hammersley,*A few seedlings of research*, Proc. Sixth Berkeley Sympos. Math. Statist, and Probability, Univ. of California Press, Berkeley, Calif., 1972. MR**0405665 (53:9457)****[3]**A. Ya. Khinchin,*Continued fractions*, Univ. of Chicago, Chicago, Ill., 1964. MR**0161833 (28:5037)****[4]**H. Kesten,*Comment to ``Subadditive ergodic theory'' by J. F. C. Kingman*, Ann. Probability**1**(1973), 903. MR**0356192 (50:8663)****[5]**L. Kuipers and H. Niederreiter,*Uniform distribution of sequences*, Wiley, Toronto, 1974. MR**0419394 (54:7415)****[6]**B. F. Logan and L. A. Shepp,*A variational problem for random Young tableaux*, Advances in Math.**26**(1977), 206-222. MR**1417317 (98e:05108)****[7]**H. Niederreiter,*Metric theorems on the distributions of sequences*, Proc. Sympos. Pure Math., vol. 24, Amer. Math. Soc., Providence, R. I., 1973, pp. 195-212. MR**0337872 (49:2641)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
10K05

Retrieve articles in all journals with MSC: 10K05

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9939-1978-0491571-6

Keywords:
Monotone subsequence,
uniform distribution,
algebraic irrationals,
discrepancy

Article copyright:
© Copyright 1978
American Mathematical Society