Growth rates for monotone subsequences
Authors:
A. del Junco and J. Michael Steele
Journal:
Proc. Amer. Math. Soc. 71 (1978), 179182
MSC:
Primary 10K05
MathSciNet review:
0491571
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: The growth rate of the largest monotone subsequence of a uniformly distributed sequence is obtained. For with algebraic irrational the exponent of growth is found to be precisely the same as for a random sequence.
 [1]
P.
Erdös and G.
Szekeres, A combinatorial problem in geometry, Compositio
Math. 2 (1935), 463–470. MR
1556929
 [2]
J.
M. Hammersley, A few seedlings of research, Proceedings of the
Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ.
California, Berkeley, Calif., 1970/1971) Univ. California Press,
Berkeley, Calif., 1972, pp. 345–394. MR 0405665
(53 #9457)
 [3]
A.
Ya. Khinchin, Continued fractions, The University of Chicago
Press, Chicago, Ill.London, 1964. MR 0161833
(28 #5037)
 [4]
J.
F. C. Kingman, Subadditive ergodic theory, Ann. Probability
1 (1973), 883–909. With discussion by D. L.
Burkholder, Daryl Daley, H. Kesten, P. Ney, Frank Spitzer and J. M.
Hammersley, and a reply by the author. MR 0356192
(50 #8663)
 [5]
L.
Kuipers and H.
Niederreiter, Uniform distribution of sequences,
WileyInterscience [John Wiley & Sons], New YorkLondonSydney, 1974.
Pure and Applied Mathematics. MR 0419394
(54 #7415)
 [6]
B.
F. Logan and L.
A. Shepp, A variational problem for random Young tableaux,
Advances in Math. 26 (1977), no. 2, 206–222. MR 1417317
(98e:05108), http://dx.doi.org/10.1016/00018708(77)900305
 [7]
H.
Niederreiter, Metric theorems on the distribution of
sequences, Analytic number theory (Proc. Sympos. Pure Math., Vol.
XXIV, St. Louis Univ., St. Louis, Mo., 1972) Amer. Math. Soc.,
Providence, R.I., 1973, pp. 195–212. MR 0337872
(49 #2641)
 [1]
 P. Erdös and G. Szekeres, A combinatorial problem in geometry, Compositio Math. 2 (1935), 463470. MR 1556929
 [2]
 J. M. Hammersley, A few seedlings of research, Proc. Sixth Berkeley Sympos. Math. Statist, and Probability, Univ. of California Press, Berkeley, Calif., 1972. MR 0405665 (53:9457)
 [3]
 A. Ya. Khinchin, Continued fractions, Univ. of Chicago, Chicago, Ill., 1964. MR 0161833 (28:5037)
 [4]
 H. Kesten, Comment to ``Subadditive ergodic theory'' by J. F. C. Kingman, Ann. Probability 1 (1973), 903. MR 0356192 (50:8663)
 [5]
 L. Kuipers and H. Niederreiter, Uniform distribution of sequences, Wiley, Toronto, 1974. MR 0419394 (54:7415)
 [6]
 B. F. Logan and L. A. Shepp, A variational problem for random Young tableaux, Advances in Math. 26 (1977), 206222. MR 1417317 (98e:05108)
 [7]
 H. Niederreiter, Metric theorems on the distributions of sequences, Proc. Sympos. Pure Math., vol. 24, Amer. Math. Soc., Providence, R. I., 1973, pp. 195212. MR 0337872 (49:2641)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
10K05
Retrieve articles in all journals
with MSC:
10K05
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029939197804915716
PII:
S 00029939(1978)04915716
Keywords:
Monotone subsequence,
uniform distribution,
algebraic irrationals,
discrepancy
Article copyright:
© Copyright 1978
American Mathematical Society
