Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Projective ideals in rings of dimension one


Authors: J. E. Carrig and W. V. Vasconcelos
Journal: Proc. Amer. Math. Soc. 71 (1978), 169-173
MSC: Primary 13C15
MathSciNet review: 0491655
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we discuss a construction that shows the projective ideals of a one-dimensional ring as radically dense in the set of all faithful ideals. Its applications are to questions of existence of a classical ring of quotients, to counting equations, and to a trade-in between Noetherianess and low homological dimension.


References [Enhancements On Off] (What's this?)

  • [1] H. Bass, Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. 95 (1960), 466-488. MR 0157984 (28:1212)
  • [2] S. U. Chase, Direct product of modules, Trans. Amer. Math. Soc. 97 (1960), 457-473. MR 0120260 (22:11017)
  • [3] P. Eakin and A. Sathaye, Prestable ideals, J. Algebra 41 (1976), 439-454. MR 0419428 (54:7449)
  • [4] D. Eisenbud and E. G. Evans, Every algebraic set in n-space is the intersection of n hypersurfaces, Invent. Math. 19 (1973), 107-112. MR 0327783 (48:6125)
  • [5] C. U. Jensen, Remarks on a change of rings theorem, Math. Z. 106 (1968), 395-401. MR 0238891 (39:251)
  • [6] I. Kaplansky, Fields and rings, Univ. of Chicago Press, Chicago, 1969. MR 0269449 (42:4345)
  • [7] M. Kneser, Uber die Darstellung algebraischer Raumkurven als Durchschnitte von Flachen, Arch. Math. 11 (1960), 157-158. MR 0182908 (32:390)
  • [8] M. P. Murthy and R. G. Swan, Vector bundles over affine surfaces, Invent. Math. 36 (1976), 125-165. MR 0439842 (55:12724)
  • [9] J. D. Sally and W. V. Vasconcelos, Stable rings, J. Pure Appl. Algebra 4 (1974), 319-336. MR 0409430 (53:13185)
  • [10] A. Seidenberg, A note on the dimension theory of rings, Pacific J. Math. 3 (1953), 505-512. MR 0054571 (14:941c)
  • [11] U. Storch, Bemerkung zu einem Satz von M. Kneser, Arch. Math. 23 (1972), 403-404. MR 0321921 (48:286)
  • [12] W. V. Vasconcelos, On finitely generated flat modules, Trans. Amer. Math. Soc. 138 (1969), 505-512. MR 0238839 (39:199)
  • [13] -, Annihilators of modules with a finite free resolution, Proc. Amer. Math. Soc. 29 (1971), 440-442. MR 0280478 (43:6198)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 13C15

Retrieve articles in all journals with MSC: 13C15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1978-0491655-2
Keywords: Projective ideal, Picard group, affine algebra, ring of quotients, stable coherence
Article copyright: © Copyright 1978 American Mathematical Society