Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Alternating basis exchanges in matroids


Author: Joseph P. S. Kung
Journal: Proc. Amer. Math. Soc. 71 (1978), 355-358
MSC: Primary 05B35
DOI: https://doi.org/10.1090/S0002-9939-1978-0500521-5
MathSciNet review: 500521
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study some of the basis exchange properties for matroids implied by the following fact from linear algebra: an alternating multilinear k-form vanishes on any ordered set of k linearly dependent vectors.


References [Enhancements On Off] (What's this?)

  • [1] H. H. Crapo and G.-C. Rota, On the foundations of combinatorial theory: Combinatorial geometries, M. I. T. Press, Cambridge, Mass., 1970. MR 0290980 (45:74)
  • [2] C. Greene, Another exchange property for bases, Proc. Amer. Math. Soc. 46 (1974), 155-156. MR 0345850 (49:10580)
  • [3] C. Greene and T. L. Magnanti, Some abstract pivot algorithms, SIAM J. Appl. Math. 29 (1975), 530-539. MR 0376401 (51:12577)
  • [4] E. L. Lawler, Combinatorial optimization: Networks and matroids, Holt, Rinehart and Winston, New York, 1976. MR 0439106 (55:12005)
  • [5] H. Whitney, The abstract properties of linear dependence, Amer. J. Math. 57 (1935), 507-533. MR 1507091

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 05B35

Retrieve articles in all journals with MSC: 05B35


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1978-0500521-5
Keywords: Matroid, combinatorial geometry, basis exchange, alternating multilinear form
Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society