Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Antisymmetry and contractive representations of function algebras

Author: Waclław Szymański
Journal: Proc. Amer. Math. Soc. 72 (1978), 319-326
MSC: Primary 46J25
Erratum: Proc. Amer. Math. Soc. 76 (1979), 358-359.
MathSciNet review: 507332
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In the present paper the antisymmetry of the image of a function algebra under its contractive representation is characterized. A complete solution of this problem is obtained for subnormal contractive representations. Some applications, in particular, to the von Neumann functional calculus, are given.

References [Enhancements On Off] (What's this?)

  • [1] F. F. Bonsall and J. Duncan, Numerical ranges of operators on normed spaces and of elements of normed algebras, London Mathematical Society Lecture Note Series, vol. 2, Cambridge University Press, London-New York, 1971. MR 0288583
  • [2] Richard Bouldin, The numerical range of a product, J. Math. Anal. Appl. 32 (1970), 459–467. MR 0270186
  • [3] Andrew Browder, Introduction to function algebras, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0246125
  • [4] John Ernest, Charting the operator terrain, Mem. Amer. Math. Soc. 6 (1976), no. 171, iii+207. MR 0463941
  • [5] Paul R. Halmos, A Hilbert space problem book, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR 0208368
  • [6] Stefan Hildebrandt, Über den numerischen Wertebereich eines Operators, Math. Ann. 163 (1966), 230–247 (German). MR 0200725
  • [7] Johann von Neumann, Eine Spektraltheorie für allgemeine Operatoren eines unitären Raumes, Math. Nachr. 4 (1951), 258–281 (German). MR 0043386
  • [8] R. R. Phelps, Lectures on Choquet's theorem, American Book Co., New York, 1961.
  • [9] Frigyes Riesz and Béla Sz.-Nagy, Functional analysis, Frederick Ungar Publishing Co., New York, 1955. Translated by Leo F. Boron. MR 0071727
  • [10] W. Szymański, Antisymmetric operator algebras, I, Ann. Polon. Math. (to appear).

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46J25

Retrieve articles in all journals with MSC: 46J25

Additional Information

Keywords: Antisymmetric operator algebra, antisymmetric function algebra, set of antisymmetry, contractive representation, subnormal representation, numerical range, spectral set, extreme point, convex hull
Article copyright: © Copyright 1978 American Mathematical Society