Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Universal Lusin measurability and subfamily summable families in abelian topological groups


Author: William H. Graves
Journal: Proc. Amer. Math. Soc. 73 (1979), 45-50
MSC: Primary 28C10; Secondary 46G99
DOI: https://doi.org/10.1090/S0002-9939-1979-0512056-5
MathSciNet review: 512056
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is proved that if G is a Hausdorff abelian topological group with respect to topologies $ \alpha \subseteq \beta $ such that $ \beta $ is complete and the identity map of $ (G,\alpha )$ onto $ (G,\beta )$ is universally Lusin measurable, then the subfamily summable families are the same for $ \alpha $ and $ \beta $.


References [Enhancements On Off] (What's this?)

  • [1] N. J. M. Andersen and J. P. R. Christensen, Some results on Borel structures with applications to subseries convergence in abelian topological groups, Israel J. Math. 15 (1973), 414-120. MR 0327966 (48:6308)
  • [2] J. P. R. Christensen, Borel structures and a topological zero-one law, Math. Scand. 29 (1971), 245-255. MR 0313467 (47:2021)
  • [3] L. Drewnowski, On the Orlicz Pettis type theorems of Kalton, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 21 (1973), 515-518. MR 0325914 (48:4260)
  • [4] -, Another note on Kalton's theorems, Studia Math. 52 (1975), 233-237.
  • [5] N. J. Kalton, Subseries convergence in topological groups and vector spaces, Israel J. Math. 10 (1971), 402-412. MR 0294558 (45:3628)
  • [6] -, Topologies on Riesz groups and applications to measure theory, Proc. London Math. Soc. (3) 28 (1974), 253-273. MR 0374377 (51:10577)
  • [7] I. Labuda, A generalization of Kalton's theorem, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 21 (1973), 509-510. MR 0323990 (48:2342)
  • [8] -, Discrete copies of rings of sets in groups and Orlicz-Pettis theorem (preprint).
  • [9] -, Universal measurability and summable families in tvs (preprint).
  • [10] V. V. Sazonov, On perfect measures, Amer. Math. Soc. Transl. (2) 48 (1965), 229-254.
  • [11] L. Schwartz, Radon measures on arbitrary topological spaces and cylindrical measures, Oxford Univ. Press, New York and London, 1973. MR 0426084 (54:14030)
  • [12] E. Thomas, The Lebesgue-Nikodym theorem for vector-valued Radon measures, Mem. Amer. Math. Soc. No. 139 (1974).

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 28C10, 46G99

Retrieve articles in all journals with MSC: 28C10, 46G99


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1979-0512056-5
Keywords: Orlicz-Pettis theorem, subfamily summable families, abelian group-valued measures, universal measurability
Article copyright: © Copyright 1979 American Mathematical Society

American Mathematical Society