Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Diophantine correct models of arithmetic


Author: L. Lipshitz
Journal: Proc. Amer. Math. Soc. 73 (1979), 107-108
MSC: Primary 03H15; Secondary 03C62, 10N15
DOI: https://doi.org/10.1090/S0002-9939-1979-0512068-1
MathSciNet review: 512068
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A countable nonstandard model of arithmetic is diophantine correct if and only if it can be embedded in arbitrarily short nonstandard initial segments of itself.


References [Enhancements On Off] (What's this?)

  • [1] Harvey Friedman, Countable models of set theories, Lecture Notes in Math., vol. 337, Springer-Verlag, Berlin and New York, 1973, pp. 539-573. MR 0347599 (50:102)
  • [2] Yuri Matijasevič, Enumerable sets are diophantine, Dokl. Akad. Nauk SSSR 191 (1970), 279-282 = Soviet Math. Dokl. 11 (1970), 354-357. MR 0258744 (41:3390)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 03H15, 03C62, 10N15

Retrieve articles in all journals with MSC: 03H15, 03C62, 10N15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1979-0512068-1
Article copyright: © Copyright 1979 American Mathematical Society

American Mathematical Society