A fixed point theorem for image-intersecting mappings

Author:
Alexander Abian

Journal:
Proc. Amer. Math. Soc. **73** (1979), 300-302

MSC:
Primary 06A05; Secondary 47H10

DOI:
https://doi.org/10.1090/S0002-9939-1979-0518508-6

MathSciNet review:
518508

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Many of the known fixed point theorems of order reversing mappings of partially or simply ordered sets into themselves pertain to dense such ordered sets. In this paper a fixed point theorem is given for an order reversing mapping from a not necessarily dense simply ordered set into itself.

**[1]**A. Abian and A. Brown,*A theorem on partially ordered sets, with applications to fixed point theorems*, Canad. J. Math.**13**(1961), 78-82. MR**0123492 (23:A817)****[2]**A. Abian,*A fixed point theorem for nonincreasing mappings*, Boll. Un. Mat. Ital.**2**(1969), 200-201. MR**0244110 (39:5427)****[3]**H. Hoeft and M. Hoeft,*Some fixed point theorems for partially ordered sets*, Canad. J. Math.**28**(1976), 992-997. MR**0419306 (54:7328)****[4]**F. T. Metcalf and T. H. Payne,*On the existence of fixed points in a totally ordered set*, Proc. Amer. Math. Soc.**31**(1972), 441-444. MR**0286722 (44:3931)****[5]**T. B. Muenzenberger and R. E. Smithson,*Fixed point theorems for acyclic and dendritic spaces*, Pacific J. Math.**72**(1977), 501-512. MR**0454953 (56:13196)****[6]**Z. Shmuely,*Fixed points of antitone mappings*, Proc. Amer. Math. Soc.**52**(1975), 503-505. MR**0373982 (51:10182)****[7]**R. E. Smithson,*Fixed points of order preserving multifunctions*, Proc. Amer. Math. Soc.**28**(1971), 304-310. MR**0274349 (43:114)****[8]**-,*Fixed points in partially ordered sets*, Pacific J. Math.**45**(1973), 363-367. MR**0316323 (47:4871)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
06A05,
47H10

Retrieve articles in all journals with MSC: 06A05, 47H10

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1979-0518508-6

Keywords:
Fixed point,
simply ordered set

Article copyright:
© Copyright 1979
American Mathematical Society