Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

The étale homotopy type of varieties over $ {\bf R}$


Author: David A. Cox
Journal: Proc. Amer. Math. Soc. 76 (1979), 17-22
MSC: Primary 14F20
MathSciNet review: 534381
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For a variety X over $ {\text{Spec}}({\mathbf{R}})$, the étale homotopy type of X is computed in terms of the action of complex conjugation on the complex points $ X({\mathbf{C}})$. This enables one to show that $ X({\mathbf{R}}) \ne \emptyset $ is equivalent to various conditions on the étale cohomology of X, and, when X is a smooth, geometrically connected, proper curve over $ {\text{Spec}}({\mathbf{R}})$, to compute the étale cohomology. Finally, there is a negative result, showing that étale cohomology cannot be used to compute the topological degree of a mapping germ $ f:({{\mathbf{R}}^n},0) \to ({{\mathbf{R}}^n},0)$ .


References [Enhancements On Off] (What's this?)

  • [1] Théorie des topos et cohomologie étale des schémas. Tome 3, Lecture Notes in Mathematics, Vol. 305, Springer-Verlag, Berlin-New York, 1973 (French). Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4); Dirigé par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaboration de P. Deligne et B. Saint-Donat. MR 0354654 (50 #7132)
  • [2] M. Artin and B. Mazur, Etale homotopy, Lecture Notes in Mathematics, vol. 100, Springer-Verlag, Berlin, 1986. Reprint of the 1969 original. MR 883959 (88a:14024)
  • [3] M. Artin and J. L. Verdier, Seminar on étale cohomology of number fields, Mimeographed notes, Woods Hole, 1964.
  • [4] Glen E. Bredon, Introduction to compact transformation groups, Academic Press, New York-London, 1972. Pure and Applied Mathematics, Vol. 46. MR 0413144 (54 #1265)
  • [5] David A. Cox, Homotopy theory of simplicial schemes, Compositio Math. 39 (1979), no. 3, 263–296. MR 550644 (81b:14012)
  • [6] P. Deligne, Cohomologie étale, Lecture Notes in Mathematics, Vol. 569, Springer-Verlag, Berlin-New York, 1977. Séminaire de Géométrie Algébrique du Bois-Marie SGA 41\over2; Avec la collaboration de J. F. Boutot, A. Grothendieck, L. Illusie et J. L. Verdier. MR 0463174 (57 #3132)
  • [7] A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III, Inst. Hautes Études Sci. Publ. Math. 28 (1966), 255. MR 0217086 (36 #178)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 14F20

Retrieve articles in all journals with MSC: 14F20


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1979-0534381-4
PII: S 0002-9939(1979)0534381-4
Article copyright: © Copyright 1979 American Mathematical Society