Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Inner limit derivations


Author: Richard H. Herman
Journal: Proc. Amer. Math. Soc. 76 (1979), 113-116
MSC: Primary 46L10
DOI: https://doi.org/10.1090/S0002-9939-1979-0534399-1
MathSciNet review: 534399
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give a condition involving the approximating derivations and a faithful state which, in conjunction with the ``core condition", guarantees that the derivation gives rise to an automorphism group of the von Neumann algebra coming from the state via the GNS procedure.


References [Enhancements On Off] (What's this?)

  • [1] O. Bratteli and U. Haagerup, Unbounded derivations and invariant states, Comm. Math. Phys. 59 (1978), 79-95. MR 0482251 (58:2329)
  • [2] O. Bratteli and D. W. Robinson, Unbounded derivations of von Neumann algebras, Ann. Inst. H. Poincaré Sect. A (N.S.) 25 (1976), 139-164. MR 0425632 (54:13586)
  • [3] -, Unbounded derivations and invariant trace states, Comm. Math. Phys. 46 (1976), 31-35. MR 0405122 (53:8917)
  • [4] A. Connes and E. Størmer, Homogeneity of the state space of factors of type III, J. Functional Analysis 28 (1978), 187-196. MR 0470689 (57:10435)
  • [5] T. Kato, Perturbation theory for linear operators, Springer-Verlag, New York, 1966. MR 0203473 (34:3324)
  • [6] C. Marchioro, A. Pellegrinotti and M. Pulvirenti, Self-adjointness of the Liouville operator for infinite classical systems, Comm. Math. Phys. 58 (1978), 113-129. MR 0468992 (57:8793)
  • [7] R. T. Powers, Resistance inequalities for KMS states of the isotropic Heisenberg model, Comm. Math. Phys. 51 (1976), 151-156. MR 0426743 (54:14680)
  • [8] R. T. Powers and S. Sakai, Unbounded derivations in operator algebras, J. Functional Analysis 19 (1975), 81-95. MR 0383093 (52:3974)
  • [9] M. Takesaki, Tomita's theory of modular Hilbert algebras and its applications, Lecture Notes in Math., vol. 128, Springer-Verlag, Berlin and New York, 1970. MR 0270168 (42:5061)
  • [10] S. Banach and S. Saks, Sur la convergence forte dans les champs $ {L^p}$, Studia Math. 2 (1930), 51-57. MR 0029381 (10:590g)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46L10

Retrieve articles in all journals with MSC: 46L10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1979-0534399-1
Article copyright: © Copyright 1979 American Mathematical Society

American Mathematical Society