The cohomology of the projective plane
Author:
William A. Thedford
Journal:
Proc. Amer. Math. Soc. 76 (1979), 327332
MSC:
Primary 55R35; Secondary 57T25
MathSciNet review:
537099
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: An Hspace is a topological space with a continuous multiplication and an identity element. In this paper X has the homotopy type of a countable CWcomplex with integral cohomology of finite type and primitively generated kcohomology, k a field. The projective nplane of X is denoted . The main results of this paper are: Theorem 1 which states that where N is a truncated polynomial algebra over k and S is a trivial kideal, and Theorem 2 which considers the case and states that where is a truncated polynomial algebra on generators in even dimensions and S is an A(p)subalgebra of so that an A(p)algebra structure can be induced on . These theorems extend results by A. Borel, W. Browder, M. Rothenberg, N. E. Steenrod, and E. Thomas.
 [1]
Armand
Borel, Sur la cohomologie des espaces fibrés principaux et
des espaces homogènes de groupes de Lie compacts, Ann. of Math.
(2) 57 (1953), 115–207 (French). MR 0051508
(14,490e)
 [2]
William
Browder and Emery
Thomas, On the projective plane of an 𝐻space,
Illinois J. Math. 7 (1963), 492–502. MR 0151974
(27 #1955)
 [3]
Allan
Clark, On 𝜋₃ of finite dimensional
𝐻spaces, Ann. of Math. (2) 78 (1963),
193–196. MR 0151975
(27 #1956)
 [4]
Albrecht
Dold and Richard
Lashof, Principal quasifibrations and fibre homotopy equivalence
of bundles., Illinois J. Math. 3 (1959),
285–305. MR 0101521
(21 #331)
 [5]
A. Dold and R. Thom, Quasifaserungen und Unendliche Symmetrische Niedriger Dimension, Fund. Math. 25 (1935), 427440.
 [6]
J. R. Hubbuck, Generalized cohomology operations and Hspaces of low rank (mimeographed).
 [7]
John
Milnor, Construction of universal bundles. II, Ann. of Math.
(2) 63 (1956), 430–436. MR 0077932
(17,1120a)
 [8]
John
W. Milnor and John
C. Moore, On the structure of Hopf algebras, Ann. of Math. (2)
81 (1965), 211–264. MR 0174052
(30 #4259)
 [9]
M.
Rothenberg and N.
E. Steenrod, The cohomology of classifying spaces
of 𝐻spaces, Bull. Amer. Math. Soc.
71 (1965),
872–875. MR 0208596
(34 #8405), http://dx.doi.org/10.1090/S000299041965114203
 [10]
J. Stasheff, On a condition that a space is an Hspace. I, II, Trans. Amer. Math. Soc. 105 (1962), 126175.
 [11]
N.
E. Steenrod, Cohomology operations, Lectures by N. E. STeenrod
written and revised by D. B. A. Epstein. Annals of Mathematics Studies, No.
50, Princeton University Press, Princeton, N.J., 1962. MR 0145525
(26 #3056)
 [12]
Masahiro
Sugawara, A condition that a space is grouplike, Math. J.
Okayama Univ. 7 (1957), 123–149. MR 0097066
(20 #3546)
 [13]
W. A. Thedford, On the A(p)algebra structure of the Z(p)cohomology of certain Hspaces, Notices Amer. Math. Soc. 18 (1971), 223; Abstract #682557.
 [14]
, The Z(p)cohomology of certain Hspaces, Thesis, New Mexico State University, 1970.
 [15]
Emery
Thomas, On functional cupproducts and the transgression
operator, Arch. Math. (Basel) 12 (1961),
435–444. MR 0149485
(26 #6972)
 [1]
 A. Borel, Cohomologie des espaces fibres, Ann. of Math. (2) 57 (1953), 115207. MR 0051508 (14:490e)
 [2]
 W. Browder and E. Thomas, On the projective plane of an Hspace, Illinois J. Math. 7 (1963), 492501. MR 0151974 (27:1955)
 [3]
 A. Clark, On of finite dimensional Hspaces, Ann. of Math. (2) 78 (1963), 193196. MR 0151975 (27:1956)
 [4]
 A. Dold and R. Lashof, Principal quasifibrations and fiber homotopy equivalence of bundles, Illinois J. Math. 3 (1959), 280305. MR 0101521 (21:331)
 [5]
 A. Dold and R. Thom, Quasifaserungen und Unendliche Symmetrische Niedriger Dimension, Fund. Math. 25 (1935), 427440.
 [6]
 J. R. Hubbuck, Generalized cohomology operations and Hspaces of low rank (mimeographed).
 [7]
 J. Milnor, Construction of universal bundles. II, Ann. of Math. (2) 63 (1956), 430436. MR 0077932 (17:1120a)
 [8]
 J. Milnor and J. Moore, On the structure of Hopf algebras, Ann. of Math. (2) 81 (1963), 211264. MR 0174052 (30:4259)
 [9]
 M. Rothenberg and N. E. Steenrod, The cohomology of classifying spaces of Hspaces, Bull. Amer. Math. Soc. 71 (1965), 872875. MR 0208596 (34:8405)
 [10]
 J. Stasheff, On a condition that a space is an Hspace. I, II, Trans. Amer. Math. Soc. 105 (1962), 126175.
 [11]
 N. E. Steenrod and D. B. A. Epstein, Cohomology operations, Ann. of Math. Studies, no. 50, Princeton Univ. Press, Princeton, N.J., 1962. MR 0145525 (26:3056)
 [12]
 M. Sugawara, On a condition that a space be grouplike, Math. J. Okayama Univ. 7 (1957), 123149. MR 0097066 (20:3546)
 [13]
 W. A. Thedford, On the A(p)algebra structure of the Z(p)cohomology of certain Hspaces, Notices Amer. Math. Soc. 18 (1971), 223; Abstract #682557.
 [14]
 , The Z(p)cohomology of certain Hspaces, Thesis, New Mexico State University, 1970.
 [15]
 E. Thomas, On functional cup products and the transgression operator, Arch. Math. 12 (1961), 435444. MR 0149485 (26:6972)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
55R35,
57T25
Retrieve articles in all journals
with MSC:
55R35,
57T25
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029939197905370997
PII:
S 00029939(1979)05370997
Keywords:
Z(p)cohomology of Hspaces,
Steenrod algebra,
projective plane of an Hspace,
homotopy associativity
Article copyright:
© Copyright 1979
American Mathematical Society
