The very well poised

Authors:
Richard Askey and Mourad E. H. Ismail

Journal:
Proc. Amer. Math. Soc. **77** (1979), 218-222

MSC:
Primary 33A30

DOI:
https://doi.org/10.1090/S0002-9939-1979-0542088-2

MathSciNet review:
542088

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A simple proof is given for Bailey's sum of the very well poised and then this is shown to contain a *q*-extension of the partial fraction decomposition of .

**[1]**G. Andrews,*Applications of basic hypergeometric series*, SIAM Rev.**16**(1974), 441-484. MR**0352557 (50:5044)****[2]**G. Andrews and R. Askey,*Enumeration of partitions*:*the role of Eulerian series and q-orthogonal polynomials*, Higher Combinatorics, edited by M. Aigner, Reidel, Dordrecht and Boston, 1977, 3-26. MR**519776 (80b:10021)****[3]**R. Askey,*The q-gamma and q-beta functions*, Applicable Anal.**8**(1978), 125-141. MR**523950 (80h:33003)****[4]**W. N. Bailey,*Generalized hypergeometric series*, Cambridge Univ. Press, Cambridge, 1935.**[5]**-,*Series of hypergeometric type which are infinite in both directions*, Quart. J. Math. Oxford Ser.**7**(1936), 105-115.**[6]**M. E.-H. Ismail,*A simple proof of Ramanujan's**sum*, Proc. Amer. Math. Soc.**63**(1977), 185-186. MR**0508183 (58:22695)****[7]**F. H. Jackson,*On q-definite integrals*, Quart. J. Pure and Appl. Math.**41**(1910), 193-203.**[8]**C. G. J. Jacobi,*Fundamenta nova theoriae functionum ellipticarum*, Regiomontis, fratrum Borntragger, 1829.**[9]**L. J. Slater,*A new proof of Rogers's transformations of infinite series*, Proc. London Math. Soc. (2)**53**(1951), 460-475. MR**0043235 (13:227g)****[10]**G. N. Watson,*A new proof of the Rogers-Ramanujan identities*, J. London Math. Soc.**4**(1929), 4-9.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
33A30

Retrieve articles in all journals with MSC: 33A30

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1979-0542088-2

Keywords:
Basic hypergeometric series

Article copyright:
© Copyright 1979
American Mathematical Society