Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Examples of higher-dimensional slice knots which are not ribbon knots


Author: L. R. Hitt
Journal: Proc. Amer. Math. Soc. 77 (1979), 291-297
MSC: Primary 57Q45
DOI: https://doi.org/10.1090/S0002-9939-1979-0542100-0
MathSciNet review: 542100
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A definition for ribbon n-knot is given which reduces to the previously studied definitions for $ n = 1$ and $ n = 2$. It is shown that for each $ n \geqslant 2$ there is a slice n-knot which is not a ribbon n-knot.


References [Enhancements On Off] (What's this?)

  • [F$ _{1}$] R. H. Fox, A quick trip through knot theory, Topology of 3-Manifolds and Related Topics, Prentice-Hall, Englewood Cliffs, N. J., 1961, pp. 120-167. MR 0140099 (25:3522)
  • [F$ _{2}$] -, Some problems in knot theory, Topology of 3-Manifolds and Related Topics, Prentice-Hall, Englewood Cliffs, N. J., pp. 168-176. MR 0140100 (25:3523)
  • [H$ _{1}$] L. R. Hitt, Handlebody presentations of knot cobordisms, Ph. D. Dissertation, Florida State University, 1977.
  • [H$ _{2}$] -, Ribbon n-knots, preprint, University of South Alabama.
  • [K] M. A. Kervaire, Les noeuds de dimensions supérieures, Bull. Soc. Math. France 93 (1965), 225-271. MR 0189052 (32:6479)
  • [L] J. Levine, Polynomial invariants of knots of codimension two, Ann. of Math. (2) 84 (1966), 537-554. MR 0200922 (34:808)
  • [M] J. Milnor, Infinite cyclic coverings, Conference on the Topology of Manifolds, Prindle, Weber & Schmidt, Boston, Mass., 1968, pp. 115-133. MR 0242163 (39:3497)
  • [R] D. Roseman, Ribbon knots, preprint, University of Iowa.
  • [Sc] H. Schubert, Knoten mit zwei Brücken, Math. Z. 65 (1950), 133-170. MR 0082104 (18:498e)
  • [SS] Y. Shinohara and D. W. Sumners, Homology invariants of cyclic coverings with applications to links, Trans. Amer. Math. Soc. 163 (1972), 101-121. MR 0284999 (44:2223)
  • [S$ _{1}$] D. W. Sumners, $ {H_2}$ of the commutator subgroup of a knot group, Proc. Amer. Math. Soc. 28 (1971), 319-320. MR 0275416 (43:1173)
  • [S$ _{2}$] -, The effect of spinning and twist spinning on some knot invariants, preprint, Florida State University.
  • [Yaj] T. Yajima, On simply knotted spheres in $ {R^4}$, Osaka J. Math. 1 (1964), 133-152. MR 0172280 (30:2500)
  • [Yan] T. Yanagawa, On ribbon 2-knots, the 3-manifold bounded by the 2-knots, Osaka J. Math. 6 (1969), 447-464. MR 0266193 (42:1101)
  • [Z] E. C. Zeeman, Twisting spun knots, Trans. Amer. Math. Soc. 115 (1965), 471-495. MR 0195085 (33:3290)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57Q45

Retrieve articles in all journals with MSC: 57Q45


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1979-0542100-0
Keywords: Ribbon knot, slice knot, infinite cyclic covering space, knot cobordism
Article copyright: © Copyright 1979 American Mathematical Society

American Mathematical Society