Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A conjecture on the $ p$-regularity of an $ H$-space


Author: J. R. Hubbuck
Journal: Proc. Amer. Math. Soc. 78 (1980), 149-153
MSC: Primary 55P45
DOI: https://doi.org/10.1090/S0002-9939-1980-0548104-4
MathSciNet review: 548104
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that a compact, simply connected, Lie group G is p-regular if and only if $ {K_o}(\Omega G,Z/pZ)$ is a primitively generated polynomial algebra. It is conjectured that this remains true for G a finite, simply connected, associative, H-space.


References [Enhancements On Off] (What's this?)

  • [1] J. F. Adams, On the groups $ J(X)$. IV, Topology 5 (1966), 21-71. MR 0198470 (33:6628)
  • [2] M. F. Atiyah and F. Hirzebruch, Vector bundles and homogeneous spaces, Proc. Sympos. Pure Math., vol. 3, Amer. Math. Soc., Providence, R. I., 1961, pp. 7-38. MR 0139181 (25:2617)
  • [3] R. Bott, On torsion in Lie groups, Proc. Nat. Acad. Sci. U.S.A. 40 (1954), 586-588. MR 0062750 (16:12a)
  • [4] W. Browder, On differential Hopf algebras, Trans. Amer. Math. Soc. 107 (1963), 153-176. MR 0145530 (26:3061)
  • [5] Francis Clark, On the K-theory of the loop space of a Lie group, Proc. Cambridge Philos. Soc. 76 (1974), 1-20. MR 0348745 (50:1240)
  • [6] P. Hilton, G. Mislin and J. Roitberg, Localization of nilpotent groups and spaces, Notas de Mathematica 15, North-Holland Math. Studies, North-Holland, Amsterdam, 1975. MR 0478146 (57:17635)
  • [7] Luke Hogkin, On the K-theory of Lie groups, Topology 6 (1967), 1-36. MR 0214099 (35:4950)
  • [8] J. R. Hubbuck, Primitivity in torsion free cohomology Hopf algebras, Comment. Math. Helv. 46 (1971), 13-43. MR 0288762 (44:5958)
  • [9] -, Two examples of finite H-spaces, Geometric Applications of Homotopy Theory 1, Lecture Notes in Math., vol. 657, Springer-Verlag, Berlin and New York, 1978, pp. 282-291. MR 513555 (80m:55011)
  • [10] P. G. Kumpel, Jr., Lie groups and products of spheres, Proc. Amer. Math. Soc. 16 (1965), 1350-1356. MR 0185037 (32:2507)
  • [11] -, On p-equivalences of $ \bmod\;p$ H-spaces, Quart. J. Math. Oxford Ser. (2) 23 (1972), 173-178. MR 0300275 (45:9321)
  • [12] J. Lin, Torsion in H-spaces. II, Ann. of Math. (2) 107 (1978), 41-88. MR 0488044 (58:7619)
  • [13] M. Mimura and H. Toda, Cohomology operations and the homotopy of compact Lie groups, Topology 9 (1970), 317-336. MR 0266237 (42:1144)
  • [14] J. P. Serre, Groupes d'homotopie et classes de groupes abéliens, Ann. of Math. (2) 58 (1953), 248-294. MR 0059548 (15:548c)
  • [15] C. Wilkerson, K-theory operations and $ \bmod\;p$ loop spaces, Math. Z. 132 (1973), 29-44. MR 0324701 (48:3051)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 55P45

Retrieve articles in all journals with MSC: 55P45


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1980-0548104-4
Keywords: p-regularity of Lie groups, loop space, finite H-space, K-theory, Adams operator
Article copyright: © Copyright 1980 American Mathematical Society

American Mathematical Society