Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)


A lemma on extensions of abelian groups

Author: Adolf Mader
Journal: Proc. Amer. Math. Soc. 78 (1980), 304-306
MSC: Primary 20K35; Secondary 20E22
MathSciNet review: 553362
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove: If H is a Fuchs 5 group, then for all groups G containing H it follows that $ H = {H_1} \oplus {H_2},G = {H_1} \oplus {G_2}$ such that $ {H_2} \subset {G_2}$ and $ \vert{G_2}\vert \leqslant \vert G/H\vert \cdot {\aleph _0}$. There are a variety of applications.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 20K35, 20E22

Retrieve articles in all journals with MSC: 20K35, 20E22

Additional Information

PII: S 0002-9939(1980)0553362-6
Keywords: Fuchs 5 group, extension, summand
Article copyright: © Copyright 1980 American Mathematical Society

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia