Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

An asymptotic formula for the Taylor coefficients of automorphic forms


Author: Scott Wolpert
Journal: Proc. Amer. Math. Soc. 78 (1980), 485-491
MSC: Primary 10D15; Secondary 30F35
DOI: https://doi.org/10.1090/S0002-9939-1980-0556618-6
MathSciNet review: 556618
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: An asymptotic estimate for the lattice of a Fuchsian group with quotient of finite area is discussed. The estimate is used to obtain an asymptotic formula for the Taylor coefficients of holomorphic automorphic forms.


References [Enhancements On Off] (What's this?)

  • [1] R. Courant and D. Hilbert, Methods of mathematical physics, vol. 1, Wiley-Interscience, New York, 1953. MR 0065391 (16:426a)
  • [2] T. Kubota, Elementary theory of Eisenstein series, Wiley, New York, 1973. MR 0429749 (55:2759)
  • [3] W. Hayman, S. Patterson and C. Pommerenke, On the coefficients of certian automorphic functions, Math. Proc. Cambridge Philos. Soc. 82 (1977), 357-367. MR 0486496 (58:6223a)
  • [4] J. Lehner, Automorphic forms, discrete groups and automorphic functions, W. J. Harvey, ed., Academic Press, New York, 1977, pp. 73-120. MR 0492234 (58:11380)
  • [5] S. J. Patterson, A lattice point problem in hyperbolic space, Mathematika 22 (1975), 81-88. MR 0422160 (54:10152)
  • [6] -, A footnote to 'On the coefficients of certain automorphic functions', Math. Proc. Cambridge Philos. Soc. 84 (1978), 337-341. MR 0486497 (58:6223b)
  • [7] A Selberg, Harmonic analysis and discontinuous groups on weakly symmetric spaces with applications to Dirichlet series, J. Indian Math. Soc. 20 (1956), 47-87. MR 0088511 (19:531g)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 10D15, 30F35

Retrieve articles in all journals with MSC: 10D15, 30F35


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1980-0556618-6
Article copyright: © Copyright 1980 American Mathematical Society

American Mathematical Society