Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Topological entropy of block maps


Author: Ethan M. Coven
Journal: Proc. Amer. Math. Soc. 78 (1980), 590-594
MSC: Primary 54H20; Secondary 54C70
DOI: https://doi.org/10.1090/S0002-9939-1980-0556638-1
MathSciNet review: 556638
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that $ h({f_\infty }) = \log 2$ where $ {f_\infty }$ is the map on the space of sequences of zeros and ones induced by the block map $ f({x_0}, \ldots ,{x_k}) = {x_0} + \Pi _{i = 1}^k({x_i} + {b_i})$ where $ k \geqslant 2$ and the k-block $ {b_1} \ldots {b_k}$ is aperiodic.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54H20, 54C70

Retrieve articles in all journals with MSC: 54H20, 54C70


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1980-0556638-1
Article copyright: © Copyright 1980 American Mathematical Society