Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)


A remark on Carleson's characterization of BMO

Author: Akihito Uchiyama
Journal: Proc. Amer. Math. Soc. 79 (1980), 35-41
MSC: Primary 42B30; Secondary 46E99
MathSciNet review: 560579
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: L. Carleson showed that if $ \varphi \in$   BMO$ (R ^n)$ and supp $ \varphi $ is compact, then $ \varphi $ can be written in the form $ \varphi (x) = \Sigma _{k = 1}^\infty \smallint {P_{{t_k}(y)}}(x - y){b_k}(y)dy + {b_0}(x)$ where $ \Sigma _{k = 0}^\infty {\left\Vert {{b_k}} \right\Vert _\infty } \leqslant C{\left\Vert \varphi \right\Vert _{{\text{BMO}}}},{t_k}(y) > 0$ and $ {P_t}(x) = {C_n}t{(\vert x{\vert^2} + {t^2})^{ - (n + 1)/2}}$ is the Poisson kernel. We show that we can take $ {b_2} = {b_3} = \cdots = 0$. This can be generalized on the space of homogeneous type with certain assumptions.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 42B30, 46E99

Retrieve articles in all journals with MSC: 42B30, 46E99

Additional Information

PII: S 0002-9939(1980)0560579-3
Keywords: BMO, Poisson kernel, space of homogeneous type
Article copyright: © Copyright 1980 American Mathematical Society

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia